Solve for q
q = \frac{9 ^ {\frac{2}{3}} {(\sqrt[3]{2 \sqrt{183} + 27} + \sqrt[3]{27 - 2 \sqrt{183}})}}{9} \approx 1.634365293
q=0
Share
Copied to clipboard
4q^{2}+4q^{4}=24q
Use the distributive property to multiply 4 by q^{2}+q^{4}.
4q^{2}+4q^{4}-24q=0
Subtract 24q from both sides.
4t^{2}+4t-24=0
Substitute t for q^{2}.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-24\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 4 for b, and -24 for c in the quadratic formula.
t=\frac{-4±20}{8}
Do the calculations.
t=2 t=-3
Solve the equation t=\frac{-4±20}{8} when ± is plus and when ± is minus.
q=\sqrt{2} q=-\sqrt{2}
Since q=t^{2}, the solutions are obtained by evaluating q=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}