Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(m^{2}+2mn+n^{2}\right)-4\left(m+n\right)\left(n-2\right)+\left(n-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+n\right)^{2}.
4m^{2}+8mn+4n^{2}-4\left(m+n\right)\left(n-2\right)+\left(n-2\right)^{2}
Use the distributive property to multiply 4 by m^{2}+2mn+n^{2}.
4m^{2}+8mn+4n^{2}-4\left(m+n\right)\left(n-2\right)+n^{2}-4n+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-2\right)^{2}.
4m^{2}+8mn+4n^{2}+\left(-4m-4n\right)\left(n-2\right)+n^{2}-4n+4
Use the distributive property to multiply -4 by m+n.
4m^{2}+8mn+4n^{2}-4mn+8m-4n^{2}+8n+n^{2}-4n+4
Use the distributive property to multiply -4m-4n by n-2.
4m^{2}+4mn+4n^{2}+8m-4n^{2}+8n+n^{2}-4n+4
Combine 8mn and -4mn to get 4mn.
4m^{2}+4mn+8m+8n+n^{2}-4n+4
Combine 4n^{2} and -4n^{2} to get 0.
4m^{2}+4mn+8m+4n+n^{2}+4
Combine 8n and -4n to get 4n.
4\left(m^{2}+2mn+n^{2}\right)-4\left(m+n\right)\left(n-2\right)+\left(n-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+n\right)^{2}.
4m^{2}+8mn+4n^{2}-4\left(m+n\right)\left(n-2\right)+\left(n-2\right)^{2}
Use the distributive property to multiply 4 by m^{2}+2mn+n^{2}.
4m^{2}+8mn+4n^{2}-4\left(m+n\right)\left(n-2\right)+n^{2}-4n+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-2\right)^{2}.
4m^{2}+8mn+4n^{2}+\left(-4m-4n\right)\left(n-2\right)+n^{2}-4n+4
Use the distributive property to multiply -4 by m+n.
4m^{2}+8mn+4n^{2}-4mn+8m-4n^{2}+8n+n^{2}-4n+4
Use the distributive property to multiply -4m-4n by n-2.
4m^{2}+4mn+4n^{2}+8m-4n^{2}+8n+n^{2}-4n+4
Combine 8mn and -4mn to get 4mn.
4m^{2}+4mn+8m+8n+n^{2}-4n+4
Combine 4n^{2} and -4n^{2} to get 0.
4m^{2}+4mn+8m+4n+n^{2}+4
Combine 8n and -4n to get 4n.