Solve for k
k\geq -1
Share
Copied to clipboard
4\left(k^{2}+2k+1\right)-4\left(k+1\right)\left(k-2\right)\geq 0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k+1\right)^{2}.
4k^{2}+8k+4-4\left(k+1\right)\left(k-2\right)\geq 0
Use the distributive property to multiply 4 by k^{2}+2k+1.
4k^{2}+8k+4+\left(-4k-4\right)\left(k-2\right)\geq 0
Use the distributive property to multiply -4 by k+1.
4k^{2}+8k+4-4k^{2}+4k+8\geq 0
Use the distributive property to multiply -4k-4 by k-2 and combine like terms.
8k+4+4k+8\geq 0
Combine 4k^{2} and -4k^{2} to get 0.
12k+4+8\geq 0
Combine 8k and 4k to get 12k.
12k+12\geq 0
Add 4 and 8 to get 12.
12k\geq -12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
k\geq \frac{-12}{12}
Divide both sides by 12. Since 12 is positive, the inequality direction remains the same.
k\geq -1
Divide -12 by 12 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}