Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{2b}{x}-4\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{2b}{x}-4\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Solve for b
b=\frac{x\left(a+4\right)}{2}
Graph
Share
Copied to clipboard
4b-4x=2b+ax
Use the distributive property to multiply 4 by b-x.
2b+ax=4b-4x
Swap sides so that all variable terms are on the left hand side.
ax=4b-4x-2b
Subtract 2b from both sides.
ax=2b-4x
Combine 4b and -2b to get 2b.
xa=2b-4x
The equation is in standard form.
\frac{xa}{x}=\frac{2b-4x}{x}
Divide both sides by x.
a=\frac{2b-4x}{x}
Dividing by x undoes the multiplication by x.
a=\frac{2b}{x}-4
Divide 2b-4x by x.
4b-4x=2b+ax
Use the distributive property to multiply 4 by b-x.
2b+ax=4b-4x
Swap sides so that all variable terms are on the left hand side.
ax=4b-4x-2b
Subtract 2b from both sides.
ax=2b-4x
Combine 4b and -2b to get 2b.
xa=2b-4x
The equation is in standard form.
\frac{xa}{x}=\frac{2b-4x}{x}
Divide both sides by x.
a=\frac{2b-4x}{x}
Dividing by x undoes the multiplication by x.
a=\frac{2b}{x}-4
Divide 2b-4x by x.
4b-4x=2b+ax
Use the distributive property to multiply 4 by b-x.
4b-4x-2b=ax
Subtract 2b from both sides.
2b-4x=ax
Combine 4b and -2b to get 2b.
2b=ax+4x
Add 4x to both sides.
\frac{2b}{2}=\frac{x\left(a+4\right)}{2}
Divide both sides by 2.
b=\frac{x\left(a+4\right)}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}