Evaluate
\left(a-b\right)\left(7a-7b+3\right)
Expand
7a^{2}-14ab+3a+7b^{2}-3b
Quiz
Algebra
5 problems similar to:
4 ( a - b ) ^ { 2 } - 2 ( a - b ) + 5 ( a - b ) + 3 ( a - b ) ^ { 2 }
Share
Copied to clipboard
4\left(a^{2}-2ab+b^{2}\right)-2\left(a-b\right)+5\left(a-b\right)+3\left(a-b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
4a^{2}-8ab+4b^{2}-2\left(a-b\right)+5\left(a-b\right)+3\left(a-b\right)^{2}
Use the distributive property to multiply 4 by a^{2}-2ab+b^{2}.
4a^{2}-8ab+4b^{2}-2a+2b+5\left(a-b\right)+3\left(a-b\right)^{2}
Use the distributive property to multiply -2 by a-b.
4a^{2}-8ab+4b^{2}-2a+2b+5a-5b+3\left(a-b\right)^{2}
Use the distributive property to multiply 5 by a-b.
4a^{2}-8ab+4b^{2}+3a+2b-5b+3\left(a-b\right)^{2}
Combine -2a and 5a to get 3a.
4a^{2}-8ab+4b^{2}+3a-3b+3\left(a-b\right)^{2}
Combine 2b and -5b to get -3b.
4a^{2}-8ab+4b^{2}+3a-3b+3\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
4a^{2}-8ab+4b^{2}+3a-3b+3a^{2}-6ab+3b^{2}
Use the distributive property to multiply 3 by a^{2}-2ab+b^{2}.
7a^{2}-8ab+4b^{2}+3a-3b-6ab+3b^{2}
Combine 4a^{2} and 3a^{2} to get 7a^{2}.
7a^{2}-14ab+4b^{2}+3a-3b+3b^{2}
Combine -8ab and -6ab to get -14ab.
7a^{2}-14ab+7b^{2}+3a-3b
Combine 4b^{2} and 3b^{2} to get 7b^{2}.
4\left(a^{2}-2ab+b^{2}\right)-2\left(a-b\right)+5\left(a-b\right)+3\left(a-b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
4a^{2}-8ab+4b^{2}-2\left(a-b\right)+5\left(a-b\right)+3\left(a-b\right)^{2}
Use the distributive property to multiply 4 by a^{2}-2ab+b^{2}.
4a^{2}-8ab+4b^{2}-2a+2b+5\left(a-b\right)+3\left(a-b\right)^{2}
Use the distributive property to multiply -2 by a-b.
4a^{2}-8ab+4b^{2}-2a+2b+5a-5b+3\left(a-b\right)^{2}
Use the distributive property to multiply 5 by a-b.
4a^{2}-8ab+4b^{2}+3a+2b-5b+3\left(a-b\right)^{2}
Combine -2a and 5a to get 3a.
4a^{2}-8ab+4b^{2}+3a-3b+3\left(a-b\right)^{2}
Combine 2b and -5b to get -3b.
4a^{2}-8ab+4b^{2}+3a-3b+3\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
4a^{2}-8ab+4b^{2}+3a-3b+3a^{2}-6ab+3b^{2}
Use the distributive property to multiply 3 by a^{2}-2ab+b^{2}.
7a^{2}-8ab+4b^{2}+3a-3b-6ab+3b^{2}
Combine 4a^{2} and 3a^{2} to get 7a^{2}.
7a^{2}-14ab+4b^{2}+3a-3b+3b^{2}
Combine -8ab and -6ab to get -14ab.
7a^{2}-14ab+7b^{2}+3a-3b
Combine 4b^{2} and 3b^{2} to get 7b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}