Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{4\left(B+C\right)}{4-37BC}\text{, }&C=0\text{ or }B\neq \frac{4}{37C}\\A\in \mathrm{C}\text{, }&\left(B=-\frac{2\sqrt{37}i}{37}\text{ and }C=\frac{2\sqrt{37}i}{37}\right)\text{ or }\left(B=\frac{2\sqrt{37}i}{37}\text{ and }C=-\frac{2\sqrt{37}i}{37}\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{4\left(A+C\right)}{4-37AC}\text{, }&C=0\text{ or }A\neq \frac{4}{37C}\\B\in \mathrm{C}\text{, }&\left(A=-\frac{2\sqrt{37}i}{37}\text{ and }C=\frac{2\sqrt{37}i}{37}\right)\text{ or }\left(A=\frac{2\sqrt{37}i}{37}\text{ and }C=-\frac{2\sqrt{37}i}{37}\right)\end{matrix}\right.
Solve for A
A=-\frac{4\left(B+C\right)}{4-37BC}
C=0\text{ or }B\neq \frac{4}{37C}
Solve for B
B=-\frac{4\left(A+C\right)}{4-37AC}
C=0\text{ or }A\neq \frac{4}{37C}
Share
Copied to clipboard
4A+4B+4C=37ABC
Use the distributive property to multiply 4 by A+B+C.
4A+4B+4C-37ABC=0
Subtract 37ABC from both sides.
4A+4C-37ABC=-4B
Subtract 4B from both sides. Anything subtracted from zero gives its negation.
4A-37ABC=-4B-4C
Subtract 4C from both sides.
\left(4-37BC\right)A=-4B-4C
Combine all terms containing A.
\frac{\left(4-37BC\right)A}{4-37BC}=\frac{-4B-4C}{4-37BC}
Divide both sides by -37BC+4.
A=\frac{-4B-4C}{4-37BC}
Dividing by -37BC+4 undoes the multiplication by -37BC+4.
A=-\frac{4\left(B+C\right)}{4-37BC}
Divide -4B-4C by -37BC+4.
4A+4B+4C=37ABC
Use the distributive property to multiply 4 by A+B+C.
4A+4B+4C-37ABC=0
Subtract 37ABC from both sides.
4B+4C-37ABC=-4A
Subtract 4A from both sides. Anything subtracted from zero gives its negation.
4B-37ABC=-4A-4C
Subtract 4C from both sides.
\left(4-37AC\right)B=-4A-4C
Combine all terms containing B.
\frac{\left(4-37AC\right)B}{4-37AC}=\frac{-4A-4C}{4-37AC}
Divide both sides by 4-37AC.
B=\frac{-4A-4C}{4-37AC}
Dividing by 4-37AC undoes the multiplication by 4-37AC.
B=-\frac{4\left(A+C\right)}{4-37AC}
Divide -4A-4C by 4-37AC.
4A+4B+4C=37ABC
Use the distributive property to multiply 4 by A+B+C.
4A+4B+4C-37ABC=0
Subtract 37ABC from both sides.
4A+4C-37ABC=-4B
Subtract 4B from both sides. Anything subtracted from zero gives its negation.
4A-37ABC=-4B-4C
Subtract 4C from both sides.
\left(4-37BC\right)A=-4B-4C
Combine all terms containing A.
\frac{\left(4-37BC\right)A}{4-37BC}=\frac{-4B-4C}{4-37BC}
Divide both sides by -37BC+4.
A=\frac{-4B-4C}{4-37BC}
Dividing by -37BC+4 undoes the multiplication by -37BC+4.
A=-\frac{4\left(B+C\right)}{4-37BC}
Divide -4B-4C by -37BC+4.
4A+4B+4C=37ABC
Use the distributive property to multiply 4 by A+B+C.
4A+4B+4C-37ABC=0
Subtract 37ABC from both sides.
4B+4C-37ABC=-4A
Subtract 4A from both sides. Anything subtracted from zero gives its negation.
4B-37ABC=-4A-4C
Subtract 4C from both sides.
\left(4-37AC\right)B=-4A-4C
Combine all terms containing B.
\frac{\left(4-37AC\right)B}{4-37AC}=\frac{-4A-4C}{4-37AC}
Divide both sides by 4-37AC.
B=\frac{-4A-4C}{4-37AC}
Dividing by 4-37AC undoes the multiplication by 4-37AC.
B=-\frac{4\left(A+C\right)}{4-37AC}
Divide -4A-4C by 4-37AC.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}