Solve for u
u\geq -5
Share
Copied to clipboard
24u+36\geq 19u+11
Use the distributive property to multiply 4 by 6u+9.
24u+36-19u\geq 11
Subtract 19u from both sides.
5u+36\geq 11
Combine 24u and -19u to get 5u.
5u\geq 11-36
Subtract 36 from both sides.
5u\geq -25
Subtract 36 from 11 to get -25.
u\geq \frac{-25}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
u\geq -5
Divide -25 by 5 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}