Solve for x
x>-\frac{1}{19}
Graph
Share
Copied to clipboard
20x-4+2\left(3x+1\right)^{2}>3x\left(6x+5\right)-2x-3
Use the distributive property to multiply 4 by 5x-1.
20x-4+2\left(9x^{2}+6x+1\right)>3x\left(6x+5\right)-2x-3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
20x-4+18x^{2}+12x+2>3x\left(6x+5\right)-2x-3
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
32x-4+18x^{2}+2>3x\left(6x+5\right)-2x-3
Combine 20x and 12x to get 32x.
32x-2+18x^{2}>3x\left(6x+5\right)-2x-3
Add -4 and 2 to get -2.
32x-2+18x^{2}>18x^{2}+15x-2x-3
Use the distributive property to multiply 3x by 6x+5.
32x-2+18x^{2}>18x^{2}+13x-3
Combine 15x and -2x to get 13x.
32x-2+18x^{2}-18x^{2}>13x-3
Subtract 18x^{2} from both sides.
32x-2>13x-3
Combine 18x^{2} and -18x^{2} to get 0.
32x-2-13x>-3
Subtract 13x from both sides.
19x-2>-3
Combine 32x and -13x to get 19x.
19x>-3+2
Add 2 to both sides.
19x>-1
Add -3 and 2 to get -1.
x>-\frac{1}{19}
Divide both sides by 19. Since 19 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}