Solve for x
x = -\frac{41}{16} = -2\frac{9}{16} = -2.5625
Graph
Share
Copied to clipboard
4x+11=\frac{3}{4}
Divide both sides by 4.
4x=\frac{3}{4}-11
Subtract 11 from both sides.
4x=\frac{3}{4}-\frac{44}{4}
Convert 11 to fraction \frac{44}{4}.
4x=\frac{3-44}{4}
Since \frac{3}{4} and \frac{44}{4} have the same denominator, subtract them by subtracting their numerators.
4x=-\frac{41}{4}
Subtract 44 from 3 to get -41.
x=\frac{-\frac{41}{4}}{4}
Divide both sides by 4.
x=\frac{-41}{4\times 4}
Express \frac{-\frac{41}{4}}{4} as a single fraction.
x=\frac{-41}{16}
Multiply 4 and 4 to get 16.
x=-\frac{41}{16}
Fraction \frac{-41}{16} can be rewritten as -\frac{41}{16} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}