Solve for λ
\lambda \in \left(1,3\right)
Share
Copied to clipboard
16\lambda ^{2}-48\lambda +36-4\left(5\lambda ^{2}-10\lambda -6\lambda +12\right)>0
Use the distributive property to multiply 4 by 4\lambda ^{2}-12\lambda +9.
16\lambda ^{2}-48\lambda +36-4\left(5\lambda ^{2}-16\lambda +12\right)>0
Combine -10\lambda and -6\lambda to get -16\lambda .
16\lambda ^{2}-48\lambda +36-20\lambda ^{2}+64\lambda -48>0
Use the distributive property to multiply -4 by 5\lambda ^{2}-16\lambda +12.
-4\lambda ^{2}-48\lambda +36+64\lambda -48>0
Combine 16\lambda ^{2} and -20\lambda ^{2} to get -4\lambda ^{2}.
-4\lambda ^{2}+16\lambda +36-48>0
Combine -48\lambda and 64\lambda to get 16\lambda .
-4\lambda ^{2}+16\lambda -12>0
Subtract 48 from 36 to get -12.
4\lambda ^{2}-16\lambda +12<0
Multiply the inequality by -1 to make the coefficient of the highest power in -4\lambda ^{2}+16\lambda -12 positive. Since -1 is negative, the inequality direction is changed.
4\lambda ^{2}-16\lambda +12=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
\lambda =\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 12}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -16 for b, and 12 for c in the quadratic formula.
\lambda =\frac{16±8}{8}
Do the calculations.
\lambda =3 \lambda =1
Solve the equation \lambda =\frac{16±8}{8} when ± is plus and when ± is minus.
4\left(\lambda -3\right)\left(\lambda -1\right)<0
Rewrite the inequality by using the obtained solutions.
\lambda -3>0 \lambda -1<0
For the product to be negative, \lambda -3 and \lambda -1 have to be of the opposite signs. Consider the case when \lambda -3 is positive and \lambda -1 is negative.
\lambda \in \emptyset
This is false for any \lambda .
\lambda -1>0 \lambda -3<0
Consider the case when \lambda -1 is positive and \lambda -3 is negative.
\lambda \in \left(1,3\right)
The solution satisfying both inequalities is \lambda \in \left(1,3\right).
\lambda \in \left(1,3\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}