Solve for y
y=-\frac{11}{15}\approx -0.733333333
Graph
Share
Copied to clipboard
3y+4.1=\frac{7.6}{4}
Divide both sides by 4.
3y+4.1=\frac{76}{40}
Expand \frac{7.6}{4} by multiplying both numerator and the denominator by 10.
3y+4.1=\frac{19}{10}
Reduce the fraction \frac{76}{40} to lowest terms by extracting and canceling out 4.
3y=\frac{19}{10}-4.1
Subtract 4.1 from both sides.
3y=\frac{19}{10}-\frac{41}{10}
Convert decimal number 4.1 to fraction \frac{41}{10}.
3y=\frac{19-41}{10}
Since \frac{19}{10} and \frac{41}{10} have the same denominator, subtract them by subtracting their numerators.
3y=\frac{-22}{10}
Subtract 41 from 19 to get -22.
3y=-\frac{11}{5}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
y=\frac{-\frac{11}{5}}{3}
Divide both sides by 3.
y=\frac{-11}{5\times 3}
Express \frac{-\frac{11}{5}}{3} as a single fraction.
y=\frac{-11}{15}
Multiply 5 and 3 to get 15.
y=-\frac{11}{15}
Fraction \frac{-11}{15} can be rewritten as -\frac{11}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}