Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(9y^{2}+6y+1\right)-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3y+1\right)^{2}.
36y^{2}+24y+4-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use the distributive property to multiply 4 by 9y^{2}+6y+1.
36y^{2}+24y-23=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Subtract 27 from 4 to get -23.
36y^{2}+24y-23=\left(4y\right)^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Consider \left(4y+9\right)\left(4y-9\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 9.
36y^{2}+24y-23=4^{2}y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Expand \left(4y\right)^{2}.
36y^{2}+24y-23=16y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Calculate 4 to the power of 2 and get 16.
36y^{2}+24y-23=16y^{2}-81+\left(10y+4\right)\left(2y-7\right)
Use the distributive property to multiply 2 by 5y+2.
36y^{2}+24y-23=16y^{2}-81+20y^{2}-62y-28
Use the distributive property to multiply 10y+4 by 2y-7 and combine like terms.
36y^{2}+24y-23=36y^{2}-81-62y-28
Combine 16y^{2} and 20y^{2} to get 36y^{2}.
36y^{2}+24y-23=36y^{2}-109-62y
Subtract 28 from -81 to get -109.
36y^{2}+24y-23-36y^{2}=-109-62y
Subtract 36y^{2} from both sides.
24y-23=-109-62y
Combine 36y^{2} and -36y^{2} to get 0.
24y-23+62y=-109
Add 62y to both sides.
86y-23=-109
Combine 24y and 62y to get 86y.
86y=-109+23
Add 23 to both sides.
86y=-86
Add -109 and 23 to get -86.
y=\frac{-86}{86}
Divide both sides by 86.
y=-1
Divide -86 by 86 to get -1.