Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5y\right)^{2}.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4 by 9x^{2}-30xy+25y^{2}.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4x-y by x+y and combine like terms.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
To find the opposite of 4x^{2}+3xy-y^{2}, find the opposite of each term.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 36x^{2} and -4x^{2} to get 32x^{2}.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine -120xy and -3xy to get -123xy.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 100y^{2} and y^{2} to get 101y^{2}.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
Expand \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
Calculate 2 to the power of 2 and get 4.
36x^{2}-123xy+101y^{2}-y^{2}
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
36x^{2}-123xy+100y^{2}
Combine 101y^{2} and -y^{2} to get 100y^{2}.
4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5y\right)^{2}.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4 by 9x^{2}-30xy+25y^{2}.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4x-y by x+y and combine like terms.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
To find the opposite of 4x^{2}+3xy-y^{2}, find the opposite of each term.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 36x^{2} and -4x^{2} to get 32x^{2}.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine -120xy and -3xy to get -123xy.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 100y^{2} and y^{2} to get 101y^{2}.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
Expand \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
Calculate 2 to the power of 2 and get 4.
36x^{2}-123xy+101y^{2}-y^{2}
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
36x^{2}-123xy+100y^{2}
Combine 101y^{2} and -y^{2} to get 100y^{2}.