Evaluate
\left(3x-4y\right)\left(12x-25y\right)
Expand
36x^{2}-123xy+100y^{2}
Share
Copied to clipboard
4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5y\right)^{2}.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4 by 9x^{2}-30xy+25y^{2}.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4x-y by x+y and combine like terms.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
To find the opposite of 4x^{2}+3xy-y^{2}, find the opposite of each term.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 36x^{2} and -4x^{2} to get 32x^{2}.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine -120xy and -3xy to get -123xy.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 100y^{2} and y^{2} to get 101y^{2}.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
Expand \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
Calculate 2 to the power of 2 and get 4.
36x^{2}-123xy+101y^{2}-y^{2}
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
36x^{2}-123xy+100y^{2}
Combine 101y^{2} and -y^{2} to get 100y^{2}.
4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5y\right)^{2}.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4 by 9x^{2}-30xy+25y^{2}.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
Use the distributive property to multiply 4x-y by x+y and combine like terms.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
To find the opposite of 4x^{2}+3xy-y^{2}, find the opposite of each term.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 36x^{2} and -4x^{2} to get 32x^{2}.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine -120xy and -3xy to get -123xy.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
Combine 100y^{2} and y^{2} to get 101y^{2}.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
Expand \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
Calculate 2 to the power of 2 and get 4.
36x^{2}-123xy+101y^{2}-y^{2}
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
36x^{2}-123xy+100y^{2}
Combine 101y^{2} and -y^{2} to get 100y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}