Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x = \frac{19}{8} = 2\frac{3}{8} = 2.375
Graph
Share
Copied to clipboard
4\left(4x^{2}-20x+25\right)=5-2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
16x^{2}-80x+100=5-2x
Use the distributive property to multiply 4 by 4x^{2}-20x+25.
16x^{2}-80x+100-5=-2x
Subtract 5 from both sides.
16x^{2}-80x+95=-2x
Subtract 5 from 100 to get 95.
16x^{2}-80x+95+2x=0
Add 2x to both sides.
16x^{2}-78x+95=0
Combine -80x and 2x to get -78x.
x=\frac{-\left(-78\right)±\sqrt{\left(-78\right)^{2}-4\times 16\times 95}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -78 for b, and 95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-78\right)±\sqrt{6084-4\times 16\times 95}}{2\times 16}
Square -78.
x=\frac{-\left(-78\right)±\sqrt{6084-64\times 95}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-78\right)±\sqrt{6084-6080}}{2\times 16}
Multiply -64 times 95.
x=\frac{-\left(-78\right)±\sqrt{4}}{2\times 16}
Add 6084 to -6080.
x=\frac{-\left(-78\right)±2}{2\times 16}
Take the square root of 4.
x=\frac{78±2}{2\times 16}
The opposite of -78 is 78.
x=\frac{78±2}{32}
Multiply 2 times 16.
x=\frac{80}{32}
Now solve the equation x=\frac{78±2}{32} when ± is plus. Add 78 to 2.
x=\frac{5}{2}
Reduce the fraction \frac{80}{32} to lowest terms by extracting and canceling out 16.
x=\frac{76}{32}
Now solve the equation x=\frac{78±2}{32} when ± is minus. Subtract 2 from 78.
x=\frac{19}{8}
Reduce the fraction \frac{76}{32} to lowest terms by extracting and canceling out 4.
x=\frac{5}{2} x=\frac{19}{8}
The equation is now solved.
4\left(4x^{2}-20x+25\right)=5-2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
16x^{2}-80x+100=5-2x
Use the distributive property to multiply 4 by 4x^{2}-20x+25.
16x^{2}-80x+100+2x=5
Add 2x to both sides.
16x^{2}-78x+100=5
Combine -80x and 2x to get -78x.
16x^{2}-78x=5-100
Subtract 100 from both sides.
16x^{2}-78x=-95
Subtract 100 from 5 to get -95.
\frac{16x^{2}-78x}{16}=-\frac{95}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{78}{16}\right)x=-\frac{95}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{39}{8}x=-\frac{95}{16}
Reduce the fraction \frac{-78}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{39}{8}x+\left(-\frac{39}{16}\right)^{2}=-\frac{95}{16}+\left(-\frac{39}{16}\right)^{2}
Divide -\frac{39}{8}, the coefficient of the x term, by 2 to get -\frac{39}{16}. Then add the square of -\frac{39}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{39}{8}x+\frac{1521}{256}=-\frac{95}{16}+\frac{1521}{256}
Square -\frac{39}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{39}{8}x+\frac{1521}{256}=\frac{1}{256}
Add -\frac{95}{16} to \frac{1521}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{39}{16}\right)^{2}=\frac{1}{256}
Factor x^{2}-\frac{39}{8}x+\frac{1521}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{16}\right)^{2}}=\sqrt{\frac{1}{256}}
Take the square root of both sides of the equation.
x-\frac{39}{16}=\frac{1}{16} x-\frac{39}{16}=-\frac{1}{16}
Simplify.
x=\frac{5}{2} x=\frac{19}{8}
Add \frac{39}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}