Solve for x
x = \frac{3 \sqrt{3} - 1}{2} \approx 2.098076211
x=\frac{-3\sqrt{3}-1}{2}\approx -3.098076211
Graph
Share
Copied to clipboard
4\left(2x+1\right)^{2}=36\times 3
Multiply both sides by 3.
4\left(4x^{2}+4x+1\right)=36\times 3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
16x^{2}+16x+4=36\times 3
Use the distributive property to multiply 4 by 4x^{2}+4x+1.
16x^{2}+16x+4=108
Multiply 36 and 3 to get 108.
16x^{2}+16x+4-108=0
Subtract 108 from both sides.
16x^{2}+16x-104=0
Subtract 108 from 4 to get -104.
x=\frac{-16±\sqrt{16^{2}-4\times 16\left(-104\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 16 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 16\left(-104\right)}}{2\times 16}
Square 16.
x=\frac{-16±\sqrt{256-64\left(-104\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-16±\sqrt{256+6656}}{2\times 16}
Multiply -64 times -104.
x=\frac{-16±\sqrt{6912}}{2\times 16}
Add 256 to 6656.
x=\frac{-16±48\sqrt{3}}{2\times 16}
Take the square root of 6912.
x=\frac{-16±48\sqrt{3}}{32}
Multiply 2 times 16.
x=\frac{48\sqrt{3}-16}{32}
Now solve the equation x=\frac{-16±48\sqrt{3}}{32} when ± is plus. Add -16 to 48\sqrt{3}.
x=\frac{3\sqrt{3}-1}{2}
Divide 48\sqrt{3}-16 by 32.
x=\frac{-48\sqrt{3}-16}{32}
Now solve the equation x=\frac{-16±48\sqrt{3}}{32} when ± is minus. Subtract 48\sqrt{3} from -16.
x=\frac{-3\sqrt{3}-1}{2}
Divide -16-48\sqrt{3} by 32.
x=\frac{3\sqrt{3}-1}{2} x=\frac{-3\sqrt{3}-1}{2}
The equation is now solved.
4\left(2x+1\right)^{2}=36\times 3
Multiply both sides by 3.
4\left(4x^{2}+4x+1\right)=36\times 3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
16x^{2}+16x+4=36\times 3
Use the distributive property to multiply 4 by 4x^{2}+4x+1.
16x^{2}+16x+4=108
Multiply 36 and 3 to get 108.
16x^{2}+16x=108-4
Subtract 4 from both sides.
16x^{2}+16x=104
Subtract 4 from 108 to get 104.
\frac{16x^{2}+16x}{16}=\frac{104}{16}
Divide both sides by 16.
x^{2}+\frac{16}{16}x=\frac{104}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+x=\frac{104}{16}
Divide 16 by 16.
x^{2}+x=\frac{13}{2}
Reduce the fraction \frac{104}{16} to lowest terms by extracting and canceling out 8.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{13}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{13}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{27}{4}
Add \frac{13}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{27}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{27}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{3\sqrt{3}}{2} x+\frac{1}{2}=-\frac{3\sqrt{3}}{2}
Simplify.
x=\frac{3\sqrt{3}-1}{2} x=\frac{-3\sqrt{3}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}