Solve for y
y = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
y=0
Graph
Share
Copied to clipboard
4+8y+4y^{2}-y^{2}=4
Use the distributive property to multiply 4 by 1+2y+y^{2}.
4+8y+3y^{2}=4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
4+8y+3y^{2}-4=0
Subtract 4 from both sides.
8y+3y^{2}=0
Subtract 4 from 4 to get 0.
y\left(8+3y\right)=0
Factor out y.
y=0 y=-\frac{8}{3}
To find equation solutions, solve y=0 and 8+3y=0.
4+8y+4y^{2}-y^{2}=4
Use the distributive property to multiply 4 by 1+2y+y^{2}.
4+8y+3y^{2}=4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
4+8y+3y^{2}-4=0
Subtract 4 from both sides.
8y+3y^{2}=0
Subtract 4 from 4 to get 0.
3y^{2}+8y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-8±\sqrt{8^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-8±8}{2\times 3}
Take the square root of 8^{2}.
y=\frac{-8±8}{6}
Multiply 2 times 3.
y=\frac{0}{6}
Now solve the equation y=\frac{-8±8}{6} when ± is plus. Add -8 to 8.
y=0
Divide 0 by 6.
y=-\frac{16}{6}
Now solve the equation y=\frac{-8±8}{6} when ± is minus. Subtract 8 from -8.
y=-\frac{8}{3}
Reduce the fraction \frac{-16}{6} to lowest terms by extracting and canceling out 2.
y=0 y=-\frac{8}{3}
The equation is now solved.
4+8y+4y^{2}-y^{2}=4
Use the distributive property to multiply 4 by 1+2y+y^{2}.
4+8y+3y^{2}=4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
8y+3y^{2}=4-4
Subtract 4 from both sides.
8y+3y^{2}=0
Subtract 4 from 4 to get 0.
3y^{2}+8y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3y^{2}+8y}{3}=\frac{0}{3}
Divide both sides by 3.
y^{2}+\frac{8}{3}y=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}+\frac{8}{3}y=0
Divide 0 by 3.
y^{2}+\frac{8}{3}y+\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{8}{3}y+\frac{16}{9}=\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
\left(y+\frac{4}{3}\right)^{2}=\frac{16}{9}
Factor y^{2}+\frac{8}{3}y+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
y+\frac{4}{3}=\frac{4}{3} y+\frac{4}{3}=-\frac{4}{3}
Simplify.
y=0 y=-\frac{8}{3}
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}