Evaluate
-\frac{98681}{3000}\approx -32.893666667
Factor
-\frac{98681}{3000} = -32\frac{2681}{3000} = -32.89366666666667
Share
Copied to clipboard
-35.08+0.9-\left(-0.953-\frac{1}{3}\right)
Multiply 4 and -8.77 to get -35.08.
-34.18-\left(-0.953-\frac{1}{3}\right)
Add -35.08 and 0.9 to get -34.18.
-34.18-\left(-\frac{953}{1000}-\frac{1}{3}\right)
Convert decimal number -0.953 to fraction -\frac{953}{1000}.
-34.18-\left(-\frac{2859}{3000}-\frac{1000}{3000}\right)
Least common multiple of 1000 and 3 is 3000. Convert -\frac{953}{1000} and \frac{1}{3} to fractions with denominator 3000.
-34.18-\frac{-2859-1000}{3000}
Since -\frac{2859}{3000} and \frac{1000}{3000} have the same denominator, subtract them by subtracting their numerators.
-34.18-\left(-\frac{3859}{3000}\right)
Subtract 1000 from -2859 to get -3859.
-34.18+\frac{3859}{3000}
The opposite of -\frac{3859}{3000} is \frac{3859}{3000}.
-\frac{1709}{50}+\frac{3859}{3000}
Convert decimal number -34.18 to fraction -\frac{3418}{100}. Reduce the fraction -\frac{3418}{100} to lowest terms by extracting and canceling out 2.
-\frac{102540}{3000}+\frac{3859}{3000}
Least common multiple of 50 and 3000 is 3000. Convert -\frac{1709}{50} and \frac{3859}{3000} to fractions with denominator 3000.
\frac{-102540+3859}{3000}
Since -\frac{102540}{3000} and \frac{3859}{3000} have the same denominator, add them by adding their numerators.
-\frac{98681}{3000}
Add -102540 and 3859 to get -98681.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}