Evaluate
-36b^{16}a^{19}
Expand
-36b^{16}a^{19}
Share
Copied to clipboard
4\left(-3\right)^{2}\left(a^{2}\right)^{2}\left(b^{3}\right)^{2}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Expand \left(-3a^{2}b^{3}\right)^{2}.
4\left(-3\right)^{2}a^{4}\left(b^{3}\right)^{2}\left(\left(-a^{3}\right)b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4\left(-3\right)^{2}a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
4\times 9a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Calculate -3 to the power of 2 and get 9.
36a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Multiply 4 and 9 to get 36.
36a^{4}b^{6}\left(-a^{3}\right)^{5}\left(b^{2}\right)^{5}
Expand \left(\left(-a^{3}\right)b^{2}\right)^{5}.
36a^{4}b^{6}\left(-a^{3}\right)^{5}b^{10}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
36a^{4}b^{16}\left(-a^{3}\right)^{5}
To multiply powers of the same base, add their exponents. Add 6 and 10 to get 16.
36a^{4}b^{16}\left(-1\right)^{5}\left(a^{3}\right)^{5}
Expand \left(-a^{3}\right)^{5}.
36a^{4}b^{16}\left(-1\right)^{5}a^{15}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
36a^{4}b^{16}\left(-1\right)a^{15}
Calculate -1 to the power of 5 and get -1.
-36a^{4}b^{16}a^{15}
Multiply 36 and -1 to get -36.
-36a^{19}b^{16}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
4\left(-3\right)^{2}\left(a^{2}\right)^{2}\left(b^{3}\right)^{2}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Expand \left(-3a^{2}b^{3}\right)^{2}.
4\left(-3\right)^{2}a^{4}\left(b^{3}\right)^{2}\left(\left(-a^{3}\right)b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4\left(-3\right)^{2}a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
4\times 9a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Calculate -3 to the power of 2 and get 9.
36a^{4}b^{6}\left(\left(-a^{3}\right)b^{2}\right)^{5}
Multiply 4 and 9 to get 36.
36a^{4}b^{6}\left(-a^{3}\right)^{5}\left(b^{2}\right)^{5}
Expand \left(\left(-a^{3}\right)b^{2}\right)^{5}.
36a^{4}b^{6}\left(-a^{3}\right)^{5}b^{10}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
36a^{4}b^{16}\left(-a^{3}\right)^{5}
To multiply powers of the same base, add their exponents. Add 6 and 10 to get 16.
36a^{4}b^{16}\left(-1\right)^{5}\left(a^{3}\right)^{5}
Expand \left(-a^{3}\right)^{5}.
36a^{4}b^{16}\left(-1\right)^{5}a^{15}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
36a^{4}b^{16}\left(-1\right)a^{15}
Calculate -1 to the power of 5 and get -1.
-36a^{4}b^{16}a^{15}
Multiply 36 and -1 to get -36.
-36a^{19}b^{16}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}