Evaluate
9\left(x^{2}-4y^{2}\right)
Expand
9x^{2}-36y^{2}
Share
Copied to clipboard
\left(4\left(-\frac{3}{2}\right)x-12y\right)\left(-\frac{3}{2}x+3y\right)
Use the distributive property to multiply 4 by -\frac{3}{2}x-3y.
\left(\frac{4\left(-3\right)}{2}x-12y\right)\left(-\frac{3}{2}x+3y\right)
Express 4\left(-\frac{3}{2}\right) as a single fraction.
\left(\frac{-12}{2}x-12y\right)\left(-\frac{3}{2}x+3y\right)
Multiply 4 and -3 to get -12.
\left(-6x-12y\right)\left(-\frac{3}{2}x+3y\right)
Divide -12 by 2 to get -6.
-6x\left(-\frac{3}{2}\right)x-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Apply the distributive property by multiplying each term of -6x-12y by each term of -\frac{3}{2}x+3y.
-6x^{2}\left(-\frac{3}{2}\right)-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Multiply x and x to get x^{2}.
\frac{-6\left(-3\right)}{2}x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Express -6\left(-\frac{3}{2}\right) as a single fraction.
\frac{18}{2}x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Multiply -6 and -3 to get 18.
9x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Divide 18 by 2 to get 9.
9x^{2}-18xy+\frac{-12\left(-3\right)}{2}yx-36y^{2}
Express -12\left(-\frac{3}{2}\right) as a single fraction.
9x^{2}-18xy+\frac{36}{2}yx-36y^{2}
Multiply -12 and -3 to get 36.
9x^{2}-18xy+18yx-36y^{2}
Divide 36 by 2 to get 18.
9x^{2}-36y^{2}
Combine -18xy and 18yx to get 0.
\left(4\left(-\frac{3}{2}\right)x-12y\right)\left(-\frac{3}{2}x+3y\right)
Use the distributive property to multiply 4 by -\frac{3}{2}x-3y.
\left(\frac{4\left(-3\right)}{2}x-12y\right)\left(-\frac{3}{2}x+3y\right)
Express 4\left(-\frac{3}{2}\right) as a single fraction.
\left(\frac{-12}{2}x-12y\right)\left(-\frac{3}{2}x+3y\right)
Multiply 4 and -3 to get -12.
\left(-6x-12y\right)\left(-\frac{3}{2}x+3y\right)
Divide -12 by 2 to get -6.
-6x\left(-\frac{3}{2}\right)x-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Apply the distributive property by multiplying each term of -6x-12y by each term of -\frac{3}{2}x+3y.
-6x^{2}\left(-\frac{3}{2}\right)-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Multiply x and x to get x^{2}.
\frac{-6\left(-3\right)}{2}x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Express -6\left(-\frac{3}{2}\right) as a single fraction.
\frac{18}{2}x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Multiply -6 and -3 to get 18.
9x^{2}-18xy-12y\left(-\frac{3}{2}\right)x-36y^{2}
Divide 18 by 2 to get 9.
9x^{2}-18xy+\frac{-12\left(-3\right)}{2}yx-36y^{2}
Express -12\left(-\frac{3}{2}\right) as a single fraction.
9x^{2}-18xy+\frac{36}{2}yx-36y^{2}
Multiply -12 and -3 to get 36.
9x^{2}-18xy+18yx-36y^{2}
Divide 36 by 2 to get 18.
9x^{2}-36y^{2}
Combine -18xy and 18yx to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}