Evaluate
\frac{p-21}{2}
Expand
\frac{p-21}{2}
Share
Copied to clipboard
4\times \frac{1}{4}-\left(p+1\right)\left(-\frac{1}{2}\right)-12
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
1-\left(p+1\right)\left(-\frac{1}{2}\right)-12
Cancel out 4 and 4.
1-\left(p\left(-\frac{1}{2}\right)-\frac{1}{2}\right)-12
Use the distributive property to multiply p+1 by -\frac{1}{2}.
1-p\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right)-12
To find the opposite of p\left(-\frac{1}{2}\right)-\frac{1}{2}, find the opposite of each term.
1+\frac{1}{2}p-\left(-\frac{1}{2}\right)-12
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
1+\frac{1}{2}p+\frac{1}{2}-12
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{2}{2}+\frac{1}{2}p+\frac{1}{2}-12
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{2}p-12
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{1}{2}p-12
Add 2 and 1 to get 3.
\frac{3}{2}+\frac{1}{2}p-\frac{24}{2}
Convert 12 to fraction \frac{24}{2}.
\frac{3-24}{2}+\frac{1}{2}p
Since \frac{3}{2} and \frac{24}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{2}+\frac{1}{2}p
Subtract 24 from 3 to get -21.
4\times \frac{1}{4}-\left(p+1\right)\left(-\frac{1}{2}\right)-12
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
1-\left(p+1\right)\left(-\frac{1}{2}\right)-12
Cancel out 4 and 4.
1-\left(p\left(-\frac{1}{2}\right)-\frac{1}{2}\right)-12
Use the distributive property to multiply p+1 by -\frac{1}{2}.
1-p\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right)-12
To find the opposite of p\left(-\frac{1}{2}\right)-\frac{1}{2}, find the opposite of each term.
1+\frac{1}{2}p-\left(-\frac{1}{2}\right)-12
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
1+\frac{1}{2}p+\frac{1}{2}-12
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{2}{2}+\frac{1}{2}p+\frac{1}{2}-12
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{2}p-12
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{1}{2}p-12
Add 2 and 1 to get 3.
\frac{3}{2}+\frac{1}{2}p-\frac{24}{2}
Convert 12 to fraction \frac{24}{2}.
\frac{3-24}{2}+\frac{1}{2}p
Since \frac{3}{2} and \frac{24}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{2}+\frac{1}{2}p
Subtract 24 from 3 to get -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}