Skip to main content
Evaluate
Tick mark Image

Share

4\left(\frac{1}{2}\left(\sin(150-135)+\sin(150+135)\right)+\cos(240)\sin(135)\right)\sin(45)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
4\left(\frac{1}{2}\left(\sin(15)+\sin(285)\right)+\cos(240)\sin(135)\right)\sin(45)
Subtract 135 from 150. Add 135 to 150.
4\left(-\frac{1}{4}\sqrt{2}+\cos(240)\sin(135)\right)\sin(45)
Do the calculations.
4\left(-\frac{1}{4}\sqrt{2}+\frac{1}{2}\left(\sin(135-240)+\sin(135+240)\right)\right)\sin(45)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
4\left(-\frac{1}{4}\sqrt{2}+\frac{1}{2}\left(\sin(-105)+\sin(375)\right)\right)\sin(45)
Subtract 240 from 135. Add 240 to 135.
4\left(-\frac{1}{4}\sqrt{2}-\frac{1}{4}\sqrt{2}\right)\sin(45)
Do the calculations.
4\left(-\frac{1}{2}\right)\sqrt{2}\sin(45)
Combine -\frac{1}{4}\sqrt{2} and -\frac{1}{4}\sqrt{2} to get -\frac{1}{2}\sqrt{2}.
-2\sqrt{2}\sin(45)
Multiply 4 and -\frac{1}{2} to get -2.
-2\sqrt{2}\times \frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
-\sqrt{2}\sqrt{2}
Cancel out 2 and 2.
-2
Multiply \sqrt{2} and \sqrt{2} to get 2.