Evaluate
-2
Share
Copied to clipboard
4\left(\frac{1}{2}\left(\sin(150-135)+\sin(150+135)\right)+\cos(240)\sin(135)\right)\sin(45)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
4\left(\frac{1}{2}\left(\sin(15)+\sin(285)\right)+\cos(240)\sin(135)\right)\sin(45)
Subtract 135 from 150. Add 135 to 150.
4\left(-\frac{1}{4}\sqrt{2}+\cos(240)\sin(135)\right)\sin(45)
Do the calculations.
4\left(-\frac{1}{4}\sqrt{2}+\frac{1}{2}\left(\sin(135-240)+\sin(135+240)\right)\right)\sin(45)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
4\left(-\frac{1}{4}\sqrt{2}+\frac{1}{2}\left(\sin(-105)+\sin(375)\right)\right)\sin(45)
Subtract 240 from 135. Add 240 to 135.
4\left(-\frac{1}{4}\sqrt{2}-\frac{1}{4}\sqrt{2}\right)\sin(45)
Do the calculations.
4\left(-\frac{1}{2}\right)\sqrt{2}\sin(45)
Combine -\frac{1}{4}\sqrt{2} and -\frac{1}{4}\sqrt{2} to get -\frac{1}{2}\sqrt{2}.
-2\sqrt{2}\sin(45)
Multiply 4 and -\frac{1}{2} to get -2.
-2\sqrt{2}\times \frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
-\sqrt{2}\sqrt{2}
Cancel out 2 and 2.
-2
Multiply \sqrt{2} and \sqrt{2} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}