Evaluate
-\frac{324}{x\left(x+9\right)^{2}}
Expand
-\frac{324}{x\left(x+9\right)^{2}}
Graph
Share
Copied to clipboard
4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and x is x\left(x+9\right). Multiply \frac{1}{x+9} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Since \frac{x}{x\left(x+9\right)} and \frac{x+9}{x\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Do the multiplications in x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine like terms in x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Express 4\times \frac{-9}{x\left(x+9\right)} as a single fraction.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and x is x\left(x+9\right). Multiply \frac{1}{x+9} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Since \frac{x}{x\left(x+9\right)} and \frac{x+9}{x\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Do the multiplications in x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine like terms in x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Express 4\times \frac{-9}{x\left(x+9\right)} as a single fraction.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine \frac{4\left(-9\right)}{x\left(x+9\right)} and \frac{4\left(-9\right)}{x\left(x+9\right)} to get 2\times \frac{4\left(-9\right)}{x\left(x+9\right)}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+9\right)^{2} and x^{2} is x^{2}\left(x+9\right)^{2}. Multiply \frac{-1}{\left(x+9\right)^{2}} times \frac{x^{2}}{x^{2}}. Multiply \frac{1}{x^{2}} times \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
Since \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} and \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
Do the multiplications in -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
Combine like terms in -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Express 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} as a single fraction.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Multiply 4 and -9 to get -36.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Express 2\times \frac{-36}{x\left(x+9\right)} as a single fraction.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
Use the distributive property to multiply 4 by 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
Express \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x as a single fraction.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+9\right) and x\left(x+9\right)^{2} is x\left(x+9\right)^{2}. Multiply \frac{2\left(-36\right)}{x\left(x+9\right)} times \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
Since \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} and \frac{72x+324}{x\left(x+9\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
Do the multiplications in 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
Combine like terms in -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
Expand x\left(x+9\right)^{2}.
4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and x is x\left(x+9\right). Multiply \frac{1}{x+9} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Since \frac{x}{x\left(x+9\right)} and \frac{x+9}{x\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Do the multiplications in x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine like terms in x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Express 4\times \frac{-9}{x\left(x+9\right)} as a single fraction.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and x is x\left(x+9\right). Multiply \frac{1}{x+9} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Since \frac{x}{x\left(x+9\right)} and \frac{x+9}{x\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Do the multiplications in x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine like terms in x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Express 4\times \frac{-9}{x\left(x+9\right)} as a single fraction.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Combine \frac{4\left(-9\right)}{x\left(x+9\right)} and \frac{4\left(-9\right)}{x\left(x+9\right)} to get 2\times \frac{4\left(-9\right)}{x\left(x+9\right)}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+9\right)^{2} and x^{2} is x^{2}\left(x+9\right)^{2}. Multiply \frac{-1}{\left(x+9\right)^{2}} times \frac{x^{2}}{x^{2}}. Multiply \frac{1}{x^{2}} times \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
Since \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} and \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
Do the multiplications in -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
Combine like terms in -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Express 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} as a single fraction.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Multiply 4 and -9 to get -36.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Express 2\times \frac{-36}{x\left(x+9\right)} as a single fraction.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
Use the distributive property to multiply 4 by 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
Express \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x as a single fraction.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+9\right) and x\left(x+9\right)^{2} is x\left(x+9\right)^{2}. Multiply \frac{2\left(-36\right)}{x\left(x+9\right)} times \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
Since \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} and \frac{72x+324}{x\left(x+9\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
Do the multiplications in 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
Combine like terms in -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
Expand x\left(x+9\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}