Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

4\times \frac{\left(\sqrt{2}\right)^{2}}{3^{2}}-3\times \left(\frac{1}{3}\right)^{3}-\sqrt{3}-\sqrt{3}
To raise \frac{\sqrt{2}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(\sqrt{2}\right)^{2}}{3^{2}}-3\times \left(\frac{1}{3}\right)^{3}-\sqrt{3}-\sqrt{3}
Express 4\times \frac{\left(\sqrt{2}\right)^{2}}{3^{2}} as a single fraction.
\frac{4\left(\sqrt{2}\right)^{2}}{3^{2}}-3\times \frac{1}{27}-\sqrt{3}-\sqrt{3}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{4\left(\sqrt{2}\right)^{2}}{3^{2}}-\frac{1}{9}-\sqrt{3}-\sqrt{3}
Multiply 3 and \frac{1}{27} to get \frac{1}{9}.
\frac{4\left(\sqrt{2}\right)^{2}}{9}-\frac{1}{9}-\sqrt{3}-\sqrt{3}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{4\left(\sqrt{2}\right)^{2}-1}{9}-\sqrt{3}-\sqrt{3}
Since \frac{4\left(\sqrt{2}\right)^{2}}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{4\left(\sqrt{2}\right)^{2}-1}{9}-2\sqrt{3}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
\frac{4\left(\sqrt{2}\right)^{2}-1}{9}+\frac{9\left(-2\right)\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{9}{9}.
\frac{4\left(\sqrt{2}\right)^{2}-1+9\left(-2\right)\sqrt{3}}{9}
Since \frac{4\left(\sqrt{2}\right)^{2}-1}{9} and \frac{9\left(-2\right)\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
\frac{4\times 2-1}{9}-2\sqrt{3}
The square of \sqrt{2} is 2.
\frac{8-1}{9}-2\sqrt{3}
Multiply 4 and 2 to get 8.
\frac{7}{9}-2\sqrt{3}
Subtract 1 from 8 to get 7.