Solve for z
z=5\sqrt{22}-20\approx 3.452078799
z=-5\sqrt{22}-20\approx -43.452078799
Share
Copied to clipboard
4z^{2}+160z=600
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4z^{2}+160z-600=600-600
Subtract 600 from both sides of the equation.
4z^{2}+160z-600=0
Subtracting 600 from itself leaves 0.
z=\frac{-160±\sqrt{160^{2}-4\times 4\left(-600\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 160 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-160±\sqrt{25600-4\times 4\left(-600\right)}}{2\times 4}
Square 160.
z=\frac{-160±\sqrt{25600-16\left(-600\right)}}{2\times 4}
Multiply -4 times 4.
z=\frac{-160±\sqrt{25600+9600}}{2\times 4}
Multiply -16 times -600.
z=\frac{-160±\sqrt{35200}}{2\times 4}
Add 25600 to 9600.
z=\frac{-160±40\sqrt{22}}{2\times 4}
Take the square root of 35200.
z=\frac{-160±40\sqrt{22}}{8}
Multiply 2 times 4.
z=\frac{40\sqrt{22}-160}{8}
Now solve the equation z=\frac{-160±40\sqrt{22}}{8} when ± is plus. Add -160 to 40\sqrt{22}.
z=5\sqrt{22}-20
Divide -160+40\sqrt{22} by 8.
z=\frac{-40\sqrt{22}-160}{8}
Now solve the equation z=\frac{-160±40\sqrt{22}}{8} when ± is minus. Subtract 40\sqrt{22} from -160.
z=-5\sqrt{22}-20
Divide -160-40\sqrt{22} by 8.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
The equation is now solved.
4z^{2}+160z=600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4z^{2}+160z}{4}=\frac{600}{4}
Divide both sides by 4.
z^{2}+\frac{160}{4}z=\frac{600}{4}
Dividing by 4 undoes the multiplication by 4.
z^{2}+40z=\frac{600}{4}
Divide 160 by 4.
z^{2}+40z=150
Divide 600 by 4.
z^{2}+40z+20^{2}=150+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+40z+400=150+400
Square 20.
z^{2}+40z+400=550
Add 150 to 400.
\left(z+20\right)^{2}=550
Factor z^{2}+40z+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+20\right)^{2}}=\sqrt{550}
Take the square root of both sides of the equation.
z+20=5\sqrt{22} z+20=-5\sqrt{22}
Simplify.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}