Solve for y
y = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
y=\frac{3-\sqrt{5}}{2}\approx 0.381966011
Graph
Share
Copied to clipboard
4y^{2}-12y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 4}}{2\times 4}
Square -12.
y=\frac{-\left(-12\right)±\sqrt{144-16\times 4}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-12\right)±\sqrt{144-64}}{2\times 4}
Multiply -16 times 4.
y=\frac{-\left(-12\right)±\sqrt{80}}{2\times 4}
Add 144 to -64.
y=\frac{-\left(-12\right)±4\sqrt{5}}{2\times 4}
Take the square root of 80.
y=\frac{12±4\sqrt{5}}{2\times 4}
The opposite of -12 is 12.
y=\frac{12±4\sqrt{5}}{8}
Multiply 2 times 4.
y=\frac{4\sqrt{5}+12}{8}
Now solve the equation y=\frac{12±4\sqrt{5}}{8} when ± is plus. Add 12 to 4\sqrt{5}.
y=\frac{\sqrt{5}+3}{2}
Divide 12+4\sqrt{5} by 8.
y=\frac{12-4\sqrt{5}}{8}
Now solve the equation y=\frac{12±4\sqrt{5}}{8} when ± is minus. Subtract 4\sqrt{5} from 12.
y=\frac{3-\sqrt{5}}{2}
Divide 12-4\sqrt{5} by 8.
y=\frac{\sqrt{5}+3}{2} y=\frac{3-\sqrt{5}}{2}
The equation is now solved.
4y^{2}-12y+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4y^{2}-12y+4-4=-4
Subtract 4 from both sides of the equation.
4y^{2}-12y=-4
Subtracting 4 from itself leaves 0.
\frac{4y^{2}-12y}{4}=-\frac{4}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{12}{4}\right)y=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-3y=-\frac{4}{4}
Divide -12 by 4.
y^{2}-3y=-1
Divide -4 by 4.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=-1+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=\frac{5}{4}
Add -1 to \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=\frac{5}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{\sqrt{5}}{2} y-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplify.
y=\frac{\sqrt{5}+3}{2} y=\frac{3-\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}