Solve for y
y = -\frac{25}{4} = -6\frac{1}{4} = -6.25
y=-4
Graph
Share
Copied to clipboard
a+b=41 ab=4\times 100=400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4y^{2}+ay+by+100. To find a and b, set up a system to be solved.
1,400 2,200 4,100 5,80 8,50 10,40 16,25 20,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 400.
1+400=401 2+200=202 4+100=104 5+80=85 8+50=58 10+40=50 16+25=41 20+20=40
Calculate the sum for each pair.
a=16 b=25
The solution is the pair that gives sum 41.
\left(4y^{2}+16y\right)+\left(25y+100\right)
Rewrite 4y^{2}+41y+100 as \left(4y^{2}+16y\right)+\left(25y+100\right).
4y\left(y+4\right)+25\left(y+4\right)
Factor out 4y in the first and 25 in the second group.
\left(y+4\right)\left(4y+25\right)
Factor out common term y+4 by using distributive property.
y=-4 y=-\frac{25}{4}
To find equation solutions, solve y+4=0 and 4y+25=0.
4y^{2}+41y+100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-41±\sqrt{41^{2}-4\times 4\times 100}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 41 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-41±\sqrt{1681-4\times 4\times 100}}{2\times 4}
Square 41.
y=\frac{-41±\sqrt{1681-16\times 100}}{2\times 4}
Multiply -4 times 4.
y=\frac{-41±\sqrt{1681-1600}}{2\times 4}
Multiply -16 times 100.
y=\frac{-41±\sqrt{81}}{2\times 4}
Add 1681 to -1600.
y=\frac{-41±9}{2\times 4}
Take the square root of 81.
y=\frac{-41±9}{8}
Multiply 2 times 4.
y=-\frac{32}{8}
Now solve the equation y=\frac{-41±9}{8} when ± is plus. Add -41 to 9.
y=-4
Divide -32 by 8.
y=-\frac{50}{8}
Now solve the equation y=\frac{-41±9}{8} when ± is minus. Subtract 9 from -41.
y=-\frac{25}{4}
Reduce the fraction \frac{-50}{8} to lowest terms by extracting and canceling out 2.
y=-4 y=-\frac{25}{4}
The equation is now solved.
4y^{2}+41y+100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4y^{2}+41y+100-100=-100
Subtract 100 from both sides of the equation.
4y^{2}+41y=-100
Subtracting 100 from itself leaves 0.
\frac{4y^{2}+41y}{4}=-\frac{100}{4}
Divide both sides by 4.
y^{2}+\frac{41}{4}y=-\frac{100}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}+\frac{41}{4}y=-25
Divide -100 by 4.
y^{2}+\frac{41}{4}y+\left(\frac{41}{8}\right)^{2}=-25+\left(\frac{41}{8}\right)^{2}
Divide \frac{41}{4}, the coefficient of the x term, by 2 to get \frac{41}{8}. Then add the square of \frac{41}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{41}{4}y+\frac{1681}{64}=-25+\frac{1681}{64}
Square \frac{41}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{41}{4}y+\frac{1681}{64}=\frac{81}{64}
Add -25 to \frac{1681}{64}.
\left(y+\frac{41}{8}\right)^{2}=\frac{81}{64}
Factor y^{2}+\frac{41}{4}y+\frac{1681}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{41}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Take the square root of both sides of the equation.
y+\frac{41}{8}=\frac{9}{8} y+\frac{41}{8}=-\frac{9}{8}
Simplify.
y=-4 y=-\frac{25}{4}
Subtract \frac{41}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}