Evaluate
\left(x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)
Factor
\left(x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)
Graph
Share
Copied to clipboard
4x^{6}+0+2x^{4}+0x^{3}-x^{2}+0x+\frac{0}{x}+1
Anything times zero gives zero.
4x^{6}+0+2x^{4}+0-x^{2}+0x+\frac{0}{x}+1
Anything times zero gives zero.
4x^{6}+2x^{4}-x^{2}+0x+\frac{0}{x}+1
Add 0 and 0 to get 0.
4x^{6}+2x^{4}-x^{2}+0+\frac{0}{x}+1
Anything times zero gives zero.
4x^{6}+2x^{4}-x^{2}+0+0+1
Zero divided by any non-zero term gives zero.
4x^{6}+2x^{4}-x^{2}+1
Add 0 and 0 to get 0.
factor(4x^{6}+0+2x^{4}+0x^{3}-x^{2}+0x+\frac{0}{x}+1)
Anything times zero gives zero.
factor(4x^{6}+0+2x^{4}+0-x^{2}+0x+\frac{0}{x}+1)
Anything times zero gives zero.
factor(4x^{6}+2x^{4}-x^{2}+0x+\frac{0}{x}+1)
Add 0 and 0 to get 0.
factor(4x^{6}+2x^{4}-x^{2}+0+\frac{0}{x}+1)
Anything times zero gives zero.
factor(4x^{6}+2x^{4}-x^{2}+0+0+1)
Zero divided by any non-zero term gives zero.
factor(4x^{6}+2x^{4}-x^{2}+1)
Add 0 and 0 to get 0.
\left(x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)
Find one factor of the form kx^{m}+n, where kx^{m} divides the monomial with the highest power 4x^{6} and n divides the constant factor 1. One such factor is x^{2}+1. Factor the polynomial by dividing it by this factor. The following polynomials are not factored since they do not have any rational roots: 4x^{4}-2x^{2}+1,x^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}