Factor
2\left(x-8\right)\left(2x-29\right)
Evaluate
2\left(x-8\right)\left(2x-29\right)
Graph
Share
Copied to clipboard
2\left(2x^{2}-45x+232\right)
Factor out 2.
a+b=-45 ab=2\times 232=464
Consider 2x^{2}-45x+232. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+232. To find a and b, set up a system to be solved.
-1,-464 -2,-232 -4,-116 -8,-58 -16,-29
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 464.
-1-464=-465 -2-232=-234 -4-116=-120 -8-58=-66 -16-29=-45
Calculate the sum for each pair.
a=-29 b=-16
The solution is the pair that gives sum -45.
\left(2x^{2}-29x\right)+\left(-16x+232\right)
Rewrite 2x^{2}-45x+232 as \left(2x^{2}-29x\right)+\left(-16x+232\right).
x\left(2x-29\right)-8\left(2x-29\right)
Factor out x in the first and -8 in the second group.
\left(2x-29\right)\left(x-8\right)
Factor out common term 2x-29 by using distributive property.
2\left(2x-29\right)\left(x-8\right)
Rewrite the complete factored expression.
4x^{2}-90x+464=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 4\times 464}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 4\times 464}}{2\times 4}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-16\times 464}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-90\right)±\sqrt{8100-7424}}{2\times 4}
Multiply -16 times 464.
x=\frac{-\left(-90\right)±\sqrt{676}}{2\times 4}
Add 8100 to -7424.
x=\frac{-\left(-90\right)±26}{2\times 4}
Take the square root of 676.
x=\frac{90±26}{2\times 4}
The opposite of -90 is 90.
x=\frac{90±26}{8}
Multiply 2 times 4.
x=\frac{116}{8}
Now solve the equation x=\frac{90±26}{8} when ± is plus. Add 90 to 26.
x=\frac{29}{2}
Reduce the fraction \frac{116}{8} to lowest terms by extracting and canceling out 4.
x=\frac{64}{8}
Now solve the equation x=\frac{90±26}{8} when ± is minus. Subtract 26 from 90.
x=8
Divide 64 by 8.
4x^{2}-90x+464=4\left(x-\frac{29}{2}\right)\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{29}{2} for x_{1} and 8 for x_{2}.
4x^{2}-90x+464=4\times \frac{2x-29}{2}\left(x-8\right)
Subtract \frac{29}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-90x+464=2\left(2x-29\right)\left(x-8\right)
Cancel out 2, the greatest common factor in 4 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}