Factor
4\left(x-5\right)\left(x+3\right)
Evaluate
4\left(x-5\right)\left(x+3\right)
Graph
Share
Copied to clipboard
4\left(x^{2}-2x-15\right)
Factor out 4.
a+b=-2 ab=1\left(-15\right)=-15
Consider x^{2}-2x-15. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(x^{2}-5x\right)+\left(3x-15\right)
Rewrite x^{2}-2x-15 as \left(x^{2}-5x\right)+\left(3x-15\right).
x\left(x-5\right)+3\left(x-5\right)
Factor out x in the first and 3 in the second group.
\left(x-5\right)\left(x+3\right)
Factor out common term x-5 by using distributive property.
4\left(x-5\right)\left(x+3\right)
Rewrite the complete factored expression.
4x^{2}-8x-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-60\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-60\right)}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-60\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64+960}}{2\times 4}
Multiply -16 times -60.
x=\frac{-\left(-8\right)±\sqrt{1024}}{2\times 4}
Add 64 to 960.
x=\frac{-\left(-8\right)±32}{2\times 4}
Take the square root of 1024.
x=\frac{8±32}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±32}{8}
Multiply 2 times 4.
x=\frac{40}{8}
Now solve the equation x=\frac{8±32}{8} when ± is plus. Add 8 to 32.
x=5
Divide 40 by 8.
x=-\frac{24}{8}
Now solve the equation x=\frac{8±32}{8} when ± is minus. Subtract 32 from 8.
x=-3
Divide -24 by 8.
4x^{2}-8x-60=4\left(x-5\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -3 for x_{2}.
4x^{2}-8x-60=4\left(x-5\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}