Factor
\left(2x-3\right)\left(2x-1\right)
Evaluate
\left(2x-3\right)\left(2x-1\right)
Graph
Share
Copied to clipboard
a+b=-8 ab=4\times 3=12
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
Rewrite 4x^{2}-8x+3 as \left(4x^{2}-6x\right)+\left(-2x+3\right).
2x\left(2x-3\right)-\left(2x-3\right)
Factor out 2x in the first and -1 in the second group.
\left(2x-3\right)\left(2x-1\right)
Factor out common term 2x-3 by using distributive property.
4x^{2}-8x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
Multiply -16 times 3.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
Add 64 to -48.
x=\frac{-\left(-8\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{8±4}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±4}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{8±4}{8} when ± is plus. Add 8 to 4.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{4}{8}
Now solve the equation x=\frac{8±4}{8} when ± is minus. Subtract 4 from 8.
x=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
4x^{2}-8x+3=4\left(x-\frac{3}{2}\right)\left(x-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{1}{2} for x_{2}.
4x^{2}-8x+3=4\times \frac{2x-3}{2}\left(x-\frac{1}{2}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-8x+3=4\times \frac{2x-3}{2}\times \frac{2x-1}{2}
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-8x+3=4\times \frac{\left(2x-3\right)\left(2x-1\right)}{2\times 2}
Multiply \frac{2x-3}{2} times \frac{2x-1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4x^{2}-8x+3=4\times \frac{\left(2x-3\right)\left(2x-1\right)}{4}
Multiply 2 times 2.
4x^{2}-8x+3=\left(2x-3\right)\left(2x-1\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}