Solve for x
x=7\sqrt{3}+10\approx 22.124355653
x=10-7\sqrt{3}\approx -2.124355653
Graph
Share
Copied to clipboard
4x^{2}-80x=188
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-80x-188=188-188
Subtract 188 from both sides of the equation.
4x^{2}-80x-188=0
Subtracting 188 from itself leaves 0.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 4\left(-188\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -80 for b, and -188 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 4\left(-188\right)}}{2\times 4}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-16\left(-188\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-80\right)±\sqrt{6400+3008}}{2\times 4}
Multiply -16 times -188.
x=\frac{-\left(-80\right)±\sqrt{9408}}{2\times 4}
Add 6400 to 3008.
x=\frac{-\left(-80\right)±56\sqrt{3}}{2\times 4}
Take the square root of 9408.
x=\frac{80±56\sqrt{3}}{2\times 4}
The opposite of -80 is 80.
x=\frac{80±56\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{56\sqrt{3}+80}{8}
Now solve the equation x=\frac{80±56\sqrt{3}}{8} when ± is plus. Add 80 to 56\sqrt{3}.
x=7\sqrt{3}+10
Divide 80+56\sqrt{3} by 8.
x=\frac{80-56\sqrt{3}}{8}
Now solve the equation x=\frac{80±56\sqrt{3}}{8} when ± is minus. Subtract 56\sqrt{3} from 80.
x=10-7\sqrt{3}
Divide 80-56\sqrt{3} by 8.
x=7\sqrt{3}+10 x=10-7\sqrt{3}
The equation is now solved.
4x^{2}-80x=188
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-80x}{4}=\frac{188}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{80}{4}\right)x=\frac{188}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-20x=\frac{188}{4}
Divide -80 by 4.
x^{2}-20x=47
Divide 188 by 4.
x^{2}-20x+\left(-10\right)^{2}=47+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=47+100
Square -10.
x^{2}-20x+100=147
Add 47 to 100.
\left(x-10\right)^{2}=147
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{147}
Take the square root of both sides of the equation.
x-10=7\sqrt{3} x-10=-7\sqrt{3}
Simplify.
x=7\sqrt{3}+10 x=10-7\sqrt{3}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}