Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x=3
Graph
Share
Copied to clipboard
a+b=-7 ab=4\left(-15\right)=-60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-12 b=5
The solution is the pair that gives sum -7.
\left(4x^{2}-12x\right)+\left(5x-15\right)
Rewrite 4x^{2}-7x-15 as \left(4x^{2}-12x\right)+\left(5x-15\right).
4x\left(x-3\right)+5\left(x-3\right)
Factor out 4x in the first and 5 in the second group.
\left(x-3\right)\left(4x+5\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{5}{4}
To find equation solutions, solve x-3=0 and 4x+5=0.
4x^{2}-7x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-15\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -7 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-15\right)}}{2\times 4}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-16\left(-15\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-7\right)±\sqrt{49+240}}{2\times 4}
Multiply -16 times -15.
x=\frac{-\left(-7\right)±\sqrt{289}}{2\times 4}
Add 49 to 240.
x=\frac{-\left(-7\right)±17}{2\times 4}
Take the square root of 289.
x=\frac{7±17}{2\times 4}
The opposite of -7 is 7.
x=\frac{7±17}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{7±17}{8} when ± is plus. Add 7 to 17.
x=3
Divide 24 by 8.
x=-\frac{10}{8}
Now solve the equation x=\frac{7±17}{8} when ± is minus. Subtract 17 from 7.
x=-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
x=3 x=-\frac{5}{4}
The equation is now solved.
4x^{2}-7x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-7x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
4x^{2}-7x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
4x^{2}-7x=15
Subtract -15 from 0.
\frac{4x^{2}-7x}{4}=\frac{15}{4}
Divide both sides by 4.
x^{2}-\frac{7}{4}x=\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{15}{4}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{15}{4}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{289}{64}
Add \frac{15}{4} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{289}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{289}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{17}{8} x-\frac{7}{8}=-\frac{17}{8}
Simplify.
x=3 x=-\frac{5}{4}
Add \frac{7}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}