Solve for x (complex solution)
x=\frac{3+\sqrt{7}i}{4}\approx 0.75+0.661437828i
x=\frac{-\sqrt{7}i+3}{4}\approx 0.75-0.661437828i
Graph
Share
Copied to clipboard
4x^{2}-6x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4\times 4}}{2\times 4}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-6\right)±\sqrt{36-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-6\right)±\sqrt{-28}}{2\times 4}
Add 36 to -64.
x=\frac{-\left(-6\right)±2\sqrt{7}i}{2\times 4}
Take the square root of -28.
x=\frac{6±2\sqrt{7}i}{2\times 4}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{7}i}{8}
Multiply 2 times 4.
x=\frac{6+2\sqrt{7}i}{8}
Now solve the equation x=\frac{6±2\sqrt{7}i}{8} when ± is plus. Add 6 to 2i\sqrt{7}.
x=\frac{3+\sqrt{7}i}{4}
Divide 6+2i\sqrt{7} by 8.
x=\frac{-2\sqrt{7}i+6}{8}
Now solve the equation x=\frac{6±2\sqrt{7}i}{8} when ± is minus. Subtract 2i\sqrt{7} from 6.
x=\frac{-\sqrt{7}i+3}{4}
Divide 6-2i\sqrt{7} by 8.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
The equation is now solved.
4x^{2}-6x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-6x+4-4=-4
Subtract 4 from both sides of the equation.
4x^{2}-6x=-4
Subtracting 4 from itself leaves 0.
\frac{4x^{2}-6x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{6}{4}\right)x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{3}{2}x=-\frac{4}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x=-1
Divide -4 by 4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{7}i}{4} x-\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}