Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-5x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4\left(-1\right)}}{2\times 4}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-16\left(-1\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-5\right)±\sqrt{25+16}}{2\times 4}
Multiply -16 times -1.
x=\frac{-\left(-5\right)±\sqrt{41}}{2\times 4}
Add 25 to 16.
x=\frac{5±\sqrt{41}}{2\times 4}
The opposite of -5 is 5.
x=\frac{5±\sqrt{41}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{41}+5}{8}
Now solve the equation x=\frac{5±\sqrt{41}}{8} when ± is plus. Add 5 to \sqrt{41}.
x=\frac{5-\sqrt{41}}{8}
Now solve the equation x=\frac{5±\sqrt{41}}{8} when ± is minus. Subtract \sqrt{41} from 5.
4x^{2}-5x-1=4\left(x-\frac{\sqrt{41}+5}{8}\right)\left(x-\frac{5-\sqrt{41}}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+\sqrt{41}}{8} for x_{1} and \frac{5-\sqrt{41}}{8} for x_{2}.