Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-4x-5=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-4x-5-8=8-8
Subtract 8 from both sides of the equation.
4x^{2}-4x-5-8=0
Subtracting 8 from itself leaves 0.
4x^{2}-4x-13=0
Subtract 8 from -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-13\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-13\right)}}{2\times 4}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-13\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-4\right)±\sqrt{16+208}}{2\times 4}
Multiply -16 times -13.
x=\frac{-\left(-4\right)±\sqrt{224}}{2\times 4}
Add 16 to 208.
x=\frac{-\left(-4\right)±4\sqrt{14}}{2\times 4}
Take the square root of 224.
x=\frac{4±4\sqrt{14}}{2\times 4}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{14}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{14}+4}{8}
Now solve the equation x=\frac{4±4\sqrt{14}}{8} when ± is plus. Add 4 to 4\sqrt{14}.
x=\frac{\sqrt{14}+1}{2}
Divide 4+4\sqrt{14} by 8.
x=\frac{4-4\sqrt{14}}{8}
Now solve the equation x=\frac{4±4\sqrt{14}}{8} when ± is minus. Subtract 4\sqrt{14} from 4.
x=\frac{1-\sqrt{14}}{2}
Divide 4-4\sqrt{14} by 8.
x=\frac{\sqrt{14}+1}{2} x=\frac{1-\sqrt{14}}{2}
The equation is now solved.
4x^{2}-4x-5=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-4x-5-\left(-5\right)=8-\left(-5\right)
Add 5 to both sides of the equation.
4x^{2}-4x=8-\left(-5\right)
Subtracting -5 from itself leaves 0.
4x^{2}-4x=13
Subtract -5 from 8.
\frac{4x^{2}-4x}{4}=\frac{13}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{13}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-x=\frac{13}{4}
Divide -4 by 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{13}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{13+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{7}{2}
Add \frac{13}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{2}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{2}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{14}}{2} x-\frac{1}{2}=-\frac{\sqrt{14}}{2}
Simplify.
x=\frac{\sqrt{14}+1}{2} x=\frac{1-\sqrt{14}}{2}
Add \frac{1}{2} to both sides of the equation.