Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-\frac{4}{3}\left(x+6\right)>0
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
4x^{2}-\frac{4}{3}x-8>0
Use the distributive property to multiply -\frac{4}{3} by x+6.
4x^{2}-\frac{4}{3}x-8=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times 4\left(-8\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -\frac{4}{3} for b, and -8 for c in the quadratic formula.
x=\frac{\frac{4}{3}±\frac{4}{3}\sqrt{73}}{8}
Do the calculations.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
Solve the equation x=\frac{\frac{4}{3}±\frac{4}{3}\sqrt{73}}{8} when ± is plus and when ± is minus.
4\left(x-\frac{\sqrt{73}+1}{6}\right)\left(x-\frac{1-\sqrt{73}}{6}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{73}+1}{6}<0 x-\frac{1-\sqrt{73}}{6}<0
For the product to be positive, x-\frac{\sqrt{73}+1}{6} and x-\frac{1-\sqrt{73}}{6} have to be both negative or both positive. Consider the case when x-\frac{\sqrt{73}+1}{6} and x-\frac{1-\sqrt{73}}{6} are both negative.
x<\frac{1-\sqrt{73}}{6}
The solution satisfying both inequalities is x<\frac{1-\sqrt{73}}{6}.
x-\frac{1-\sqrt{73}}{6}>0 x-\frac{\sqrt{73}+1}{6}>0
Consider the case when x-\frac{\sqrt{73}+1}{6} and x-\frac{1-\sqrt{73}}{6} are both positive.
x>\frac{\sqrt{73}+1}{6}
The solution satisfying both inequalities is x>\frac{\sqrt{73}+1}{6}.
x<\frac{1-\sqrt{73}}{6}\text{; }x>\frac{\sqrt{73}+1}{6}
The final solution is the union of the obtained solutions.