Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-3x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-2\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-2\right)}}{2\times 4}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-16\left(-2\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2\times 4}
Multiply -16 times -2.
x=\frac{-\left(-3\right)±\sqrt{41}}{2\times 4}
Add 9 to 32.
x=\frac{3±\sqrt{41}}{2\times 4}
The opposite of -3 is 3.
x=\frac{3±\sqrt{41}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{41}+3}{8}
Now solve the equation x=\frac{3±\sqrt{41}}{8} when ± is plus. Add 3 to \sqrt{41}.
x=\frac{3-\sqrt{41}}{8}
Now solve the equation x=\frac{3±\sqrt{41}}{8} when ± is minus. Subtract \sqrt{41} from 3.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
The equation is now solved.
4x^{2}-3x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-3x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
4x^{2}-3x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
4x^{2}-3x=2
Subtract -2 from 0.
\frac{4x^{2}-3x}{4}=\frac{2}{4}
Divide both sides by 4.
x^{2}-\frac{3}{4}x=\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{3}{4}x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Add \frac{1}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Simplify.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
Add \frac{3}{8} to both sides of the equation.