Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x+16=0
Divide both sides by 4.
a+b=-8 ab=1\times 16=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Rewrite x^{2}-8x+16 as \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Factor out x in the first and -4 in the second group.
\left(x-4\right)\left(x-4\right)
Factor out common term x-4 by using distributive property.
\left(x-4\right)^{2}
Rewrite as a binomial square.
x=4
To find equation solution, solve x-4=0.
4x^{2}-32x+64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\times 64}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -32 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\times 64}}{2\times 4}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-16\times 64}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-32\right)±\sqrt{1024-1024}}{2\times 4}
Multiply -16 times 64.
x=\frac{-\left(-32\right)±\sqrt{0}}{2\times 4}
Add 1024 to -1024.
x=-\frac{-32}{2\times 4}
Take the square root of 0.
x=\frac{32}{2\times 4}
The opposite of -32 is 32.
x=\frac{32}{8}
Multiply 2 times 4.
x=4
Divide 32 by 8.
4x^{2}-32x+64=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-32x+64-64=-64
Subtract 64 from both sides of the equation.
4x^{2}-32x=-64
Subtracting 64 from itself leaves 0.
\frac{4x^{2}-32x}{4}=-\frac{64}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{32}{4}\right)x=-\frac{64}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-8x=-\frac{64}{4}
Divide -32 by 4.
x^{2}-8x=-16
Divide -64 by 4.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-16+16
Square -4.
x^{2}-8x+16=0
Add -16 to 16.
\left(x-4\right)^{2}=0
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-4=0 x-4=0
Simplify.
x=4 x=4
Add 4 to both sides of the equation.
x=4
The equation is now solved. Solutions are the same.