Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
Graph
Share
Copied to clipboard
a+b=-32 ab=4\times 39=156
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+39. To find a and b, set up a system to be solved.
-1,-156 -2,-78 -3,-52 -4,-39 -6,-26 -12,-13
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 156.
-1-156=-157 -2-78=-80 -3-52=-55 -4-39=-43 -6-26=-32 -12-13=-25
Calculate the sum for each pair.
a=-26 b=-6
The solution is the pair that gives sum -32.
\left(4x^{2}-26x\right)+\left(-6x+39\right)
Rewrite 4x^{2}-32x+39 as \left(4x^{2}-26x\right)+\left(-6x+39\right).
2x\left(2x-13\right)-3\left(2x-13\right)
Factor out 2x in the first and -3 in the second group.
\left(2x-13\right)\left(2x-3\right)
Factor out common term 2x-13 by using distributive property.
x=\frac{13}{2} x=\frac{3}{2}
To find equation solutions, solve 2x-13=0 and 2x-3=0.
4x^{2}-32x+39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\times 39}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -32 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\times 39}}{2\times 4}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-16\times 39}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-32\right)±\sqrt{1024-624}}{2\times 4}
Multiply -16 times 39.
x=\frac{-\left(-32\right)±\sqrt{400}}{2\times 4}
Add 1024 to -624.
x=\frac{-\left(-32\right)±20}{2\times 4}
Take the square root of 400.
x=\frac{32±20}{2\times 4}
The opposite of -32 is 32.
x=\frac{32±20}{8}
Multiply 2 times 4.
x=\frac{52}{8}
Now solve the equation x=\frac{32±20}{8} when ± is plus. Add 32 to 20.
x=\frac{13}{2}
Reduce the fraction \frac{52}{8} to lowest terms by extracting and canceling out 4.
x=\frac{12}{8}
Now solve the equation x=\frac{32±20}{8} when ± is minus. Subtract 20 from 32.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{13}{2} x=\frac{3}{2}
The equation is now solved.
4x^{2}-32x+39=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-32x+39-39=-39
Subtract 39 from both sides of the equation.
4x^{2}-32x=-39
Subtracting 39 from itself leaves 0.
\frac{4x^{2}-32x}{4}=-\frac{39}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{32}{4}\right)x=-\frac{39}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-8x=-\frac{39}{4}
Divide -32 by 4.
x^{2}-8x+\left(-4\right)^{2}=-\frac{39}{4}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{39}{4}+16
Square -4.
x^{2}-8x+16=\frac{25}{4}
Add -\frac{39}{4} to 16.
\left(x-4\right)^{2}=\frac{25}{4}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-4=\frac{5}{2} x-4=-\frac{5}{2}
Simplify.
x=\frac{13}{2} x=\frac{3}{2}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}