Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=10\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=10\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=10\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=10\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
4x^{2}-2yx+25=4x^{2}-20x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-2yx+25-4x^{2}=-20x+25
Subtract 4x^{2} from both sides.
-2yx+25=-20x+25
Combine 4x^{2} and -4x^{2} to get 0.
-2yx+25+20x=25
Add 20x to both sides.
-2yx+20x=25-25
Subtract 25 from both sides.
-2yx+20x=0
Subtract 25 from 25 to get 0.
\left(-2y+20\right)x=0
Combine all terms containing x.
\left(20-2y\right)x=0
The equation is in standard form.
x=0
Divide 0 by -2y+20.
4x^{2}-2yx+25=4x^{2}-20x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
-2yx+25=4x^{2}-20x+25-4x^{2}
Subtract 4x^{2} from both sides.
-2yx+25=-20x+25
Combine 4x^{2} and -4x^{2} to get 0.
-2yx=-20x+25-25
Subtract 25 from both sides.
-2yx=-20x
Subtract 25 from 25 to get 0.
\left(-2x\right)y=-20x
The equation is in standard form.
\frac{\left(-2x\right)y}{-2x}=-\frac{20x}{-2x}
Divide both sides by -2x.
y=-\frac{20x}{-2x}
Dividing by -2x undoes the multiplication by -2x.
y=10
Divide -20x by -2x.
4x^{2}-2yx+25=4x^{2}-20x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-2yx+25-4x^{2}=-20x+25
Subtract 4x^{2} from both sides.
-2yx+25=-20x+25
Combine 4x^{2} and -4x^{2} to get 0.
-2yx+25+20x=25
Add 20x to both sides.
-2yx+20x=25-25
Subtract 25 from both sides.
-2yx+20x=0
Subtract 25 from 25 to get 0.
\left(-2y+20\right)x=0
Combine all terms containing x.
\left(20-2y\right)x=0
The equation is in standard form.
x=0
Divide 0 by -2y+20.
4x^{2}-2yx+25=4x^{2}-20x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
-2yx+25=4x^{2}-20x+25-4x^{2}
Subtract 4x^{2} from both sides.
-2yx+25=-20x+25
Combine 4x^{2} and -4x^{2} to get 0.
-2yx=-20x+25-25
Subtract 25 from both sides.
-2yx=-20x
Subtract 25 from 25 to get 0.
\left(-2x\right)y=-20x
The equation is in standard form.
\frac{\left(-2x\right)y}{-2x}=-\frac{20x}{-2x}
Divide both sides by -2x.
y=-\frac{20x}{-2x}
Dividing by -2x undoes the multiplication by -2x.
y=10
Divide -20x by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}