Solve for x (complex solution)
x=\frac{1+3\sqrt{3}i}{4}\approx 0.25+1.299038106i
x=\frac{-3\sqrt{3}i+1}{4}\approx 0.25-1.299038106i
Graph
Share
Copied to clipboard
4x^{2}-2x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times 7}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\times 7}}{2\times 4}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\times 7}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-2\right)±\sqrt{4-112}}{2\times 4}
Multiply -16 times 7.
x=\frac{-\left(-2\right)±\sqrt{-108}}{2\times 4}
Add 4 to -112.
x=\frac{-\left(-2\right)±6\sqrt{3}i}{2\times 4}
Take the square root of -108.
x=\frac{2±6\sqrt{3}i}{2\times 4}
The opposite of -2 is 2.
x=\frac{2±6\sqrt{3}i}{8}
Multiply 2 times 4.
x=\frac{2+6\sqrt{3}i}{8}
Now solve the equation x=\frac{2±6\sqrt{3}i}{8} when ± is plus. Add 2 to 6i\sqrt{3}.
x=\frac{1+3\sqrt{3}i}{4}
Divide 2+6i\sqrt{3} by 8.
x=\frac{-6\sqrt{3}i+2}{8}
Now solve the equation x=\frac{2±6\sqrt{3}i}{8} when ± is minus. Subtract 6i\sqrt{3} from 2.
x=\frac{-3\sqrt{3}i+1}{4}
Divide 2-6i\sqrt{3} by 8.
x=\frac{1+3\sqrt{3}i}{4} x=\frac{-3\sqrt{3}i+1}{4}
The equation is now solved.
4x^{2}-2x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-2x+7-7=-7
Subtract 7 from both sides of the equation.
4x^{2}-2x=-7
Subtracting 7 from itself leaves 0.
\frac{4x^{2}-2x}{4}=-\frac{7}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{2}{4}\right)x=-\frac{7}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{1}{2}x=-\frac{7}{4}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{7}{4}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{7}{4}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{27}{16}
Add -\frac{7}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{27}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{27}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3\sqrt{3}i}{4} x-\frac{1}{4}=-\frac{3\sqrt{3}i}{4}
Simplify.
x=\frac{1+3\sqrt{3}i}{4} x=\frac{-3\sqrt{3}i+1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}