Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-28x+49=0
Add 49 to both sides.
a+b=-28 ab=4\times 49=196
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+49. To find a and b, set up a system to be solved.
-1,-196 -2,-98 -4,-49 -7,-28 -14,-14
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 196.
-1-196=-197 -2-98=-100 -4-49=-53 -7-28=-35 -14-14=-28
Calculate the sum for each pair.
a=-14 b=-14
The solution is the pair that gives sum -28.
\left(4x^{2}-14x\right)+\left(-14x+49\right)
Rewrite 4x^{2}-28x+49 as \left(4x^{2}-14x\right)+\left(-14x+49\right).
2x\left(2x-7\right)-7\left(2x-7\right)
Factor out 2x in the first and -7 in the second group.
\left(2x-7\right)\left(2x-7\right)
Factor out common term 2x-7 by using distributive property.
\left(2x-7\right)^{2}
Rewrite as a binomial square.
x=\frac{7}{2}
To find equation solution, solve 2x-7=0.
4x^{2}-28x=-49
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-28x-\left(-49\right)=-49-\left(-49\right)
Add 49 to both sides of the equation.
4x^{2}-28x-\left(-49\right)=0
Subtracting -49 from itself leaves 0.
4x^{2}-28x+49=0
Subtract -49 from 0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\times 49}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -28 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\times 49}}{2\times 4}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\times 49}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-28\right)±\sqrt{784-784}}{2\times 4}
Multiply -16 times 49.
x=\frac{-\left(-28\right)±\sqrt{0}}{2\times 4}
Add 784 to -784.
x=-\frac{-28}{2\times 4}
Take the square root of 0.
x=\frac{28}{2\times 4}
The opposite of -28 is 28.
x=\frac{28}{8}
Multiply 2 times 4.
x=\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
4x^{2}-28x=-49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-28x}{4}=-\frac{49}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{28}{4}\right)x=-\frac{49}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-7x=-\frac{49}{4}
Divide -28 by 4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{49}{4}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{-49+49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=0
Add -\frac{49}{4} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=0
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{7}{2}=0 x-\frac{7}{2}=0
Simplify.
x=\frac{7}{2} x=\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.
x=\frac{7}{2}
The equation is now solved. Solutions are the same.