Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-28x+57=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\times 57}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -28 for b, and 57 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\times 57}}{2\times 4}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\times 57}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-28\right)±\sqrt{784-912}}{2\times 4}
Multiply -16 times 57.
x=\frac{-\left(-28\right)±\sqrt{-128}}{2\times 4}
Add 784 to -912.
x=\frac{-\left(-28\right)±8\sqrt{2}i}{2\times 4}
Take the square root of -128.
x=\frac{28±8\sqrt{2}i}{2\times 4}
The opposite of -28 is 28.
x=\frac{28±8\sqrt{2}i}{8}
Multiply 2 times 4.
x=\frac{28+2\times 2^{\frac{5}{2}}i}{8}
Now solve the equation x=\frac{28±8\sqrt{2}i}{8} when ± is plus. Add 28 to 8i\sqrt{2}.
x=\frac{7}{2}+\sqrt{2}i
Divide 28+2i\times 2^{\frac{5}{2}} by 8.
x=\frac{-2\times 2^{\frac{5}{2}}i+28}{8}
Now solve the equation x=\frac{28±8\sqrt{2}i}{8} when ± is minus. Subtract 8i\sqrt{2} from 28.
x=-\sqrt{2}i+\frac{7}{2}
Divide 28-2i\times 2^{\frac{5}{2}} by 8.
x=\frac{7}{2}+\sqrt{2}i x=-\sqrt{2}i+\frac{7}{2}
The equation is now solved.
4x^{2}-28x+57=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-28x+57-57=-57
Subtract 57 from both sides of the equation.
4x^{2}-28x=-57
Subtracting 57 from itself leaves 0.
\frac{4x^{2}-28x}{4}=-\frac{57}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{28}{4}\right)x=-\frac{57}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-7x=-\frac{57}{4}
Divide -28 by 4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{57}{4}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{-57+49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-2
Add -\frac{57}{4} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=-2
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\sqrt{2}i x-\frac{7}{2}=-\sqrt{2}i
Simplify.
x=\frac{7}{2}+\sqrt{2}i x=-\sqrt{2}i+\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.