Solve for x (complex solution)
x=\frac{7}{2}+5i=3.5+5i
x=\frac{7}{2}-5i=3.5-5i
Graph
Share
Copied to clipboard
4x^{2}-28x+149=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\times 149}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -28 for b, and 149 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\times 149}}{2\times 4}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\times 149}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-28\right)±\sqrt{784-2384}}{2\times 4}
Multiply -16 times 149.
x=\frac{-\left(-28\right)±\sqrt{-1600}}{2\times 4}
Add 784 to -2384.
x=\frac{-\left(-28\right)±40i}{2\times 4}
Take the square root of -1600.
x=\frac{28±40i}{2\times 4}
The opposite of -28 is 28.
x=\frac{28±40i}{8}
Multiply 2 times 4.
x=\frac{28+40i}{8}
Now solve the equation x=\frac{28±40i}{8} when ± is plus. Add 28 to 40i.
x=\frac{7}{2}+5i
Divide 28+40i by 8.
x=\frac{28-40i}{8}
Now solve the equation x=\frac{28±40i}{8} when ± is minus. Subtract 40i from 28.
x=\frac{7}{2}-5i
Divide 28-40i by 8.
x=\frac{7}{2}+5i x=\frac{7}{2}-5i
The equation is now solved.
4x^{2}-28x+149=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-28x+149-149=-149
Subtract 149 from both sides of the equation.
4x^{2}-28x=-149
Subtracting 149 from itself leaves 0.
\frac{4x^{2}-28x}{4}=-\frac{149}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{28}{4}\right)x=-\frac{149}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-7x=-\frac{149}{4}
Divide -28 by 4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{149}{4}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{-149+49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-25
Add -\frac{149}{4} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=-25
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-25}
Take the square root of both sides of the equation.
x-\frac{7}{2}=5i x-\frac{7}{2}=-5i
Simplify.
x=\frac{7}{2}+5i x=\frac{7}{2}-5i
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}