Factor
\left(x-4\right)\left(4x-9\right)
Evaluate
\left(x-4\right)\left(4x-9\right)
Graph
Share
Copied to clipboard
a+b=-25 ab=4\times 36=144
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+36. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-16 b=-9
The solution is the pair that gives sum -25.
\left(4x^{2}-16x\right)+\left(-9x+36\right)
Rewrite 4x^{2}-25x+36 as \left(4x^{2}-16x\right)+\left(-9x+36\right).
4x\left(x-4\right)-9\left(x-4\right)
Factor out 4x in the first and -9 in the second group.
\left(x-4\right)\left(4x-9\right)
Factor out common term x-4 by using distributive property.
4x^{2}-25x+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 4\times 36}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 4\times 36}}{2\times 4}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-16\times 36}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-25\right)±\sqrt{625-576}}{2\times 4}
Multiply -16 times 36.
x=\frac{-\left(-25\right)±\sqrt{49}}{2\times 4}
Add 625 to -576.
x=\frac{-\left(-25\right)±7}{2\times 4}
Take the square root of 49.
x=\frac{25±7}{2\times 4}
The opposite of -25 is 25.
x=\frac{25±7}{8}
Multiply 2 times 4.
x=\frac{32}{8}
Now solve the equation x=\frac{25±7}{8} when ± is plus. Add 25 to 7.
x=4
Divide 32 by 8.
x=\frac{18}{8}
Now solve the equation x=\frac{25±7}{8} when ± is minus. Subtract 7 from 25.
x=\frac{9}{4}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
4x^{2}-25x+36=4\left(x-4\right)\left(x-\frac{9}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and \frac{9}{4} for x_{2}.
4x^{2}-25x+36=4\left(x-4\right)\times \frac{4x-9}{4}
Subtract \frac{9}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-25x+36=\left(x-4\right)\left(4x-9\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}