Solve for x (complex solution)
x=3+\frac{1}{2}i=3+0.5i
x=3-\frac{1}{2}i=3-0.5i
Graph
Share
Copied to clipboard
4x^{2}-24x+37=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\times 37}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -24 for b, and 37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 4\times 37}}{2\times 4}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-16\times 37}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-24\right)±\sqrt{576-592}}{2\times 4}
Multiply -16 times 37.
x=\frac{-\left(-24\right)±\sqrt{-16}}{2\times 4}
Add 576 to -592.
x=\frac{-\left(-24\right)±4i}{2\times 4}
Take the square root of -16.
x=\frac{24±4i}{2\times 4}
The opposite of -24 is 24.
x=\frac{24±4i}{8}
Multiply 2 times 4.
x=\frac{24+4i}{8}
Now solve the equation x=\frac{24±4i}{8} when ± is plus. Add 24 to 4i.
x=3+\frac{1}{2}i
Divide 24+4i by 8.
x=\frac{24-4i}{8}
Now solve the equation x=\frac{24±4i}{8} when ± is minus. Subtract 4i from 24.
x=3-\frac{1}{2}i
Divide 24-4i by 8.
x=3+\frac{1}{2}i x=3-\frac{1}{2}i
The equation is now solved.
4x^{2}-24x+37=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-24x+37-37=-37
Subtract 37 from both sides of the equation.
4x^{2}-24x=-37
Subtracting 37 from itself leaves 0.
\frac{4x^{2}-24x}{4}=-\frac{37}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{24}{4}\right)x=-\frac{37}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-6x=-\frac{37}{4}
Divide -24 by 4.
x^{2}-6x+\left(-3\right)^{2}=-\frac{37}{4}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{37}{4}+9
Square -3.
x^{2}-6x+9=-\frac{1}{4}
Add -\frac{37}{4} to 9.
\left(x-3\right)^{2}=-\frac{1}{4}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x-3=\frac{1}{2}i x-3=-\frac{1}{2}i
Simplify.
x=3+\frac{1}{2}i x=3-\frac{1}{2}i
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}