Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-21 ab=4\left(-18\right)=-72
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Calculate the sum for each pair.
a=-24 b=3
The solution is the pair that gives sum -21.
\left(4x^{2}-24x\right)+\left(3x-18\right)
Rewrite 4x^{2}-21x-18 as \left(4x^{2}-24x\right)+\left(3x-18\right).
4x\left(x-6\right)+3\left(x-6\right)
Factor out 4x in the first and 3 in the second group.
\left(x-6\right)\left(4x+3\right)
Factor out common term x-6 by using distributive property.
4x^{2}-21x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 4\left(-18\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 4\left(-18\right)}}{2\times 4}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-16\left(-18\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 4}
Multiply -16 times -18.
x=\frac{-\left(-21\right)±\sqrt{729}}{2\times 4}
Add 441 to 288.
x=\frac{-\left(-21\right)±27}{2\times 4}
Take the square root of 729.
x=\frac{21±27}{2\times 4}
The opposite of -21 is 21.
x=\frac{21±27}{8}
Multiply 2 times 4.
x=\frac{48}{8}
Now solve the equation x=\frac{21±27}{8} when ± is plus. Add 21 to 27.
x=6
Divide 48 by 8.
x=-\frac{6}{8}
Now solve the equation x=\frac{21±27}{8} when ± is minus. Subtract 27 from 21.
x=-\frac{3}{4}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
4x^{2}-21x-18=4\left(x-6\right)\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and -\frac{3}{4} for x_{2}.
4x^{2}-21x-18=4\left(x-6\right)\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4x^{2}-21x-18=4\left(x-6\right)\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-21x-18=\left(x-6\right)\left(4x+3\right)
Cancel out 4, the greatest common factor in 4 and 4.