Solve for x
x=\frac{3\sqrt{1110}}{4}+25\approx 49.987496873
x=-\frac{3\sqrt{1110}}{4}+25\approx 0.012503127
Graph
Share
Copied to clipboard
4x^{2}-200x+2.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 4\times 2.5}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -200 for b, and 2.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 4\times 2.5}}{2\times 4}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000-16\times 2.5}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-200\right)±\sqrt{40000-40}}{2\times 4}
Multiply -16 times 2.5.
x=\frac{-\left(-200\right)±\sqrt{39960}}{2\times 4}
Add 40000 to -40.
x=\frac{-\left(-200\right)±6\sqrt{1110}}{2\times 4}
Take the square root of 39960.
x=\frac{200±6\sqrt{1110}}{2\times 4}
The opposite of -200 is 200.
x=\frac{200±6\sqrt{1110}}{8}
Multiply 2 times 4.
x=\frac{6\sqrt{1110}+200}{8}
Now solve the equation x=\frac{200±6\sqrt{1110}}{8} when ± is plus. Add 200 to 6\sqrt{1110}.
x=\frac{3\sqrt{1110}}{4}+25
Divide 200+6\sqrt{1110} by 8.
x=\frac{200-6\sqrt{1110}}{8}
Now solve the equation x=\frac{200±6\sqrt{1110}}{8} when ± is minus. Subtract 6\sqrt{1110} from 200.
x=-\frac{3\sqrt{1110}}{4}+25
Divide 200-6\sqrt{1110} by 8.
x=\frac{3\sqrt{1110}}{4}+25 x=-\frac{3\sqrt{1110}}{4}+25
The equation is now solved.
4x^{2}-200x+2.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-200x+2.5-2.5=-2.5
Subtract 2.5 from both sides of the equation.
4x^{2}-200x=-2.5
Subtracting 2.5 from itself leaves 0.
\frac{4x^{2}-200x}{4}=-\frac{2.5}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{200}{4}\right)x=-\frac{2.5}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-50x=-\frac{2.5}{4}
Divide -200 by 4.
x^{2}-50x=-0.625
Divide -2.5 by 4.
x^{2}-50x+\left(-25\right)^{2}=-0.625+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-0.625+625
Square -25.
x^{2}-50x+625=624.375
Add -0.625 to 625.
\left(x-25\right)^{2}=624.375
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{624.375}
Take the square root of both sides of the equation.
x-25=\frac{3\sqrt{1110}}{4} x-25=-\frac{3\sqrt{1110}}{4}
Simplify.
x=\frac{3\sqrt{1110}}{4}+25 x=-\frac{3\sqrt{1110}}{4}+25
Add 25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}