Factor
4\left(x-25\right)\left(x-21\right)
Evaluate
4\left(x-25\right)\left(x-21\right)
Graph
Share
Copied to clipboard
4\left(x^{2}-46x+525\right)
Factor out 4.
a+b=-46 ab=1\times 525=525
Consider x^{2}-46x+525. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+525. To find a and b, set up a system to be solved.
-1,-525 -3,-175 -5,-105 -7,-75 -15,-35 -21,-25
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 525.
-1-525=-526 -3-175=-178 -5-105=-110 -7-75=-82 -15-35=-50 -21-25=-46
Calculate the sum for each pair.
a=-25 b=-21
The solution is the pair that gives sum -46.
\left(x^{2}-25x\right)+\left(-21x+525\right)
Rewrite x^{2}-46x+525 as \left(x^{2}-25x\right)+\left(-21x+525\right).
x\left(x-25\right)-21\left(x-25\right)
Factor out x in the first and -21 in the second group.
\left(x-25\right)\left(x-21\right)
Factor out common term x-25 by using distributive property.
4\left(x-25\right)\left(x-21\right)
Rewrite the complete factored expression.
4x^{2}-184x+2100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-184\right)±\sqrt{\left(-184\right)^{2}-4\times 4\times 2100}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-184\right)±\sqrt{33856-4\times 4\times 2100}}{2\times 4}
Square -184.
x=\frac{-\left(-184\right)±\sqrt{33856-16\times 2100}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-184\right)±\sqrt{33856-33600}}{2\times 4}
Multiply -16 times 2100.
x=\frac{-\left(-184\right)±\sqrt{256}}{2\times 4}
Add 33856 to -33600.
x=\frac{-\left(-184\right)±16}{2\times 4}
Take the square root of 256.
x=\frac{184±16}{2\times 4}
The opposite of -184 is 184.
x=\frac{184±16}{8}
Multiply 2 times 4.
x=\frac{200}{8}
Now solve the equation x=\frac{184±16}{8} when ± is plus. Add 184 to 16.
x=25
Divide 200 by 8.
x=\frac{168}{8}
Now solve the equation x=\frac{184±16}{8} when ± is minus. Subtract 16 from 184.
x=21
Divide 168 by 8.
4x^{2}-184x+2100=4\left(x-25\right)\left(x-21\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 25 for x_{1} and 21 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}