Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x-11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-11\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-11\right)}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-11\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144+176}}{2\times 4}
Multiply -16 times -11.
x=\frac{-\left(-12\right)±\sqrt{320}}{2\times 4}
Add 144 to 176.
x=\frac{-\left(-12\right)±8\sqrt{5}}{2\times 4}
Take the square root of 320.
x=\frac{12±8\sqrt{5}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±8\sqrt{5}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{5}+12}{8}
Now solve the equation x=\frac{12±8\sqrt{5}}{8} when ± is plus. Add 12 to 8\sqrt{5}.
x=\sqrt{5}+\frac{3}{2}
Divide 12+8\sqrt{5} by 8.
x=\frac{12-8\sqrt{5}}{8}
Now solve the equation x=\frac{12±8\sqrt{5}}{8} when ± is minus. Subtract 8\sqrt{5} from 12.
x=\frac{3}{2}-\sqrt{5}
Divide 12-8\sqrt{5} by 8.
4x^{2}-12x-11=4\left(x-\left(\sqrt{5}+\frac{3}{2}\right)\right)\left(x-\left(\frac{3}{2}-\sqrt{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2}+\sqrt{5} for x_{1} and \frac{3}{2}-\sqrt{5} for x_{2}.